Computational Geomechanics. Manuel Pastor

Чтение книги онлайн.

Читать онлайн книгу Computational Geomechanics - Manuel Pastor страница 36

Автор:
Жанр:
Серия:
Издательство:
Computational Geomechanics - Manuel Pastor

Скачать книгу

(2.70) and (2.71), have been used.

      Finally, if, for the solid phase, the following constitutive relationship is used (viz. Lewis and Schrefler 1998)

      where Ks is the bulk modulus of the grain material, then the mass balance equations are obtained in the same form as in Section 2.4 (with χw = Sw), though this is not in agreement with what was assumed here for the effective stress.

      2.5.6 Nomenclature for Section 2.5

      As this section does not follow the notations use of the book, we summarize below for purposes of nomenclature:

      ga =dry airgw =vapora =airw =waters =solid

      The equations derived in this chapter together with appropriately defined constitutive laws allow (almost) all geomechanical phenomena to be studied. In Chapter 3, we shall discuss in some detail approximation by the finite element method leading to their solution.

      1 Biot, M. A. (1941). General theory of three‐dimensional consolidation, J. Appl. Phys., 12, 155–164.

      2 Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 182–185.

      3 Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid‐saturated porous solid, Part I: Low‐frequency range, J. Acoust. Soc. Am., 28, 2, 168–178.

      4 Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid‐saturated porous solid, Part II: Low‐frequency range, J. Acoust. Soc. Am., 28, 2, 179–191.

      5 Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 4, 1482–1498.

      6 Biot, M. A. and Willis, P. G. (1957). The elastic coefficients of the theory consolidation, J. Appl. Mech., 24, 594–601.

      7 Bishop, A. W. (1959). The principle of effective stress, Teknisk Ukeblad, 39, 859–863.

      8 Bolzon, G., Schrefler, B. A. (1995). State surfaces of partially saturated soils: an effective pressure approach. Appl. Mech. Rev., 48 (10), 643–649.

      9 Borja, R. I. (2004). Cam‐Clay plasticity. Part V: A mathematical framework for three‐phase deformation and strain localization analyses of partially saturated porous media. Comp. Methods Appl. Mech. Eng., 193, 5301–5338.

      10 Bowen, R. M. (1976). Theory of Mixtures in Continuum Physics, Academic Press, New York.

      11 Bowen, R. M. (1980). Incompressible porous media models by use of the theory of mixtures, Int. J. Eng. Sci. 18, 1129–1148.

      12 Bowen, R. M. (1982). Compressible porous media models by use of theories of mixtures, Int. J. Eng. Sci. 20, 697–735.

      13 Chan, A. H. C., Famiyesin, O. O., and Muir Wood, D. (1991). A fully explicit u‐w schemes for dynamic soil and pore fluid interaction. Asian Pacific Conference on Computational Mechanics, Hong Kong, Vol. 1, Balkema, Rotterdam, 881–887 (11–13 December 1991).

      14 Coussy, O. (1995). Mechanics of Porous Media, John Wiley & Sons, Chichester.

      15 Coussy, O. (2004). Poromechanics, John Wiley & Sons, Chichester.

      16 Craig, R. F. (1992). Soil Mechanics (5), Chapman & Hall, London.

      17 De Boer, R. (1996). Highlights in the historical development of the porous media theory, Appl. Mech. Rev., 49, 201–262.

      18 De Boer, R. and Kowalski, S. J. (1983). A plasticity theory for fluid saturated porous

Скачать книгу