Beleuchtung in Innenräumen - Human Centric Integrative Lighting. Tran Quoc Khanh
Чтение книги онлайн.
Читать онлайн книгу Beleuchtung in Innenräumen - Human Centric Integrative Lighting - Tran Quoc Khanh страница 29
3.4.3 PRC-Funktion, Phasenverschiebung
Nach der Erkenntnis, dass das Sonnlicht der dominanteste Zeitgeber für den humanen Biorhythmus ist, wird nun die Frage interessant und relevant, wie die Änderungen des Sonnenlichts durch die wechselnden Wettereinflüsse (Regen, Schnee, Sturm, Bewölkung) auf die Synchronisation der biologischen Uhr einwirken. Es ist ebenfalls relevant zu fragen, wie die Phasenlage der zirkadianen Periodizität von der Lichtintensität und von der Uhrzeit der Lichtexposition abhängt. Diese Frage führt zu der sog. PRC-Kurve (engl. phase response curve, s. Abb. 3.14).
Diese in der Entrainment-Theorie bekannte Kurve (s. Abb. 3.14) beruht auf dem Grundprinzip, dass ein Lichtreiz, der auf die Netzhaut eintrifft, die biologische Uhr verstellen kann. Der Betrag der Phasenlageverschiebung hängt von der Lichtintensität und der spektralen Strahlungszusammensetzung ab, während die Richtung der Phasenverschiebung vom Zeitpunkt der Lichteinwirkung abhängt.
Abb. 3.14 Phase response curve (PRC). Quelle: TU Darmstadt.
An dem Verlauf der PRC-Kurve in der Abb. 3.14 erkennt man, dass die Lichtexpositionen zwischen 12 und 20 Uhr kaum bzw. keine Phasenverschiebung verursachen. Lichteinwirkungen auf den Abendoszillator des zentralen Schrittmachers zwischen 20 und 5 Uhr am frühen Morgen stellen diesen Oszillator nach (engl. delay shift). Der Übergang zwischen Phasenverzögerung (Abendoszillator ist aktiv) zur Phasenverkürzung (Voreinstellung, der Morgenoszillator ist aktiv) ist sehr schnell in der Zeit um 5 Uhr morgens. Die höchste Effizienz der Phasenverkürzung wird um 6–7 Uhr morgens erreicht. Es kann täglich eine Phasenverschiebung von etwa max. 3 h erreicht werden.
Im Abschn. 9.4.2 dieses Buches werden Lichtwirkungen in den nächtlichen Stunden mit polychromatischem weißem Licht, u. a. die Phasenverschiebung in der Abb. 9.31 und in der Tab. 9.5, ausführlich beschrieben. In [32] wird über eine Forschungsarbeit berichtet, die die Wellenlängenabhängigkeit der Phasenverschiebung des Melatoninrhythmus untersuchte. Die untersuchten Wellenlängen waren dabei 660 nm (rot), 595 nm (bernsteinfarben, engl. amber), 525nm (grün), 497nm (grünblau) und 470nm (blau). Die Lichtquellen waren Halbleiter-LEDs. Fünfzehn Testpersonen nahmen am Test mit allen Wellenlängen sowie an einer Referenzbedingung mit keinem Licht teil. Jede Lichtbedingung durchlief zwei aufeinander folgende Nächte (Nacht 1 und Nacht 2). Die Speichelproben für die Melatoninanalyse wurden immer jeweils 30 min von 19:00–2:00 Uhr (Nacht 1) und von 19:00– 1:00 Uhr (Nacht 2) entnommen. Die Lichtexposition bei jeder Testbedingung wurde für die Nacht 1 zwischen Mitternacht und 2:00 Uhr durchgeführt. Der Zeitpunkt der Melatoninanstiege (engl. dim light melatonin onset, DLMO) in den beiden Nächten wurde jeweils gemessen, woraus die Phasenverschiebung errechnet wurde. Die kürzeren Wellenlängen (470 und 497 nm) verursachten die größere Phasenverschiebung zwischen 27 und 36 min.
3.4.4 Chronotypen, Schlafverhalten
Die Bestimmung der freilaufenden zirkadianen Periodendauer kann anhand der Bestimmung der Periodizität der Verläufe von Melatoninausschüttung, Cortisolsynthese und Körperkerntemperatur (CBT) realisiert werden. Eine Forschungsarbeit dazu wurde an zwei Altersgruppen von Czeisler et al. [33] durchgeführt, deren Ergebnisse in der Tab. 3.1 dargestellt sind.
Aus der Tab. 3.1 geht hervor, dass die intrinsische zirkadiane Periodendauer nicht vom Alter und vom physiologischem Mechanismus (CBT, Cortisol, Melatonin) abhängt. Diese Mechanismen unterliegen also der zentralen periodischen Steuerung des zentralen Schrittmachers.
Tab. 3.1 Freilaufende intrinsische zirkadiane Periodendauer. Quelle: Basierend auf Czeisler et al., 1999 [33].
Altersgruppe | Mittleres Alter (Jahre) | Periodendauer CBT (h:min) | Periodendauer Melatonin (h:min) | Periodendauer Cortisol (h:min) |
---|---|---|---|---|
Jung | 23,7 ± 2,7 | 24:10 | 24:11 | 24:11 |
Älter | 67,4 ± 3,2 | 24.10 | 24:13 | Keine Angabe |
Abb. 3.15 Zirkadiane und homöostatische Komponenten der Wachheit über zwei Tage. Quelle: Basierend auf Vandahl et al., 2009 [20]/Technische Universität Ilmenau.
Die freilaufende zirkadiane Periodendauer verteilt sich innerhalb der Bevölkerung statistisch gesehen normal. Diejenigen, die eine kürzere Periodendauer haben, sind die sog. Lerchen, stehen morgens früh auf, sind abends früh müde und möchten deshalb früh ins Bett. Diejenigen Menschen, die eine längere Periodendauer haben (sog. Eulen), verhalten sich umgekehrt. Sie stehen später auf und sind in den Abendstundenwie auch in den ersten Nachtstunden munter. Mit einem durchschnittlichen Wert der freilaufenden zirkadianen Periodendauer von etwa 24 h und 12 min tickt die biologische Uhr der meisten Menschen etwas zu langsam und muss deshalb durch das tägliche Morgenlicht vorgestellt werden.
Der Wach-Schlaf-Zyklus enthält Verläufe von Wachheit am Tag und Schlafphasen in der Nacht und setzt sich in einer ersten Näherung additiv aus einem zirkadianen Rhythmus mit einer zirkadianen Komponente C (s. Abb. 3.15) und aus einer homöostatischen Komponente S des sog. Schlafhomöostaten zusammen. Beide Komponenten verlaufen über den Tag periodisch.
Von etwa 20–8 Uhr sinkt die Wachheit in der zirkadianen Komponente (s. Abb. 3.15) und erreicht ein Minimum um 8 Uhr. Danach erhöht sich die Wachheit stetig bis ca. 20 Uhr. Während eines angenommenen Schlafs zwischen 0–8 Uhr sinkt diese zirkadiane Komponente, während der homöostatische Schlafdruck sinkt und die homöostatische Wachheit ansteigt. In der Summe sinkt die Wachheit während des nächtlichen Schlafs bis etwa 5 Uhr am frühen Morgen und steigt danach an. Am Tag zwischen etwa 8–20 Uhr sinkt die homöostatische Wachheit wieder stetig, während die zirkadiane Komponente ansteigt. Als Ergebnis erhöht sich die Summe der Wachheit am Tag zwischen etwa 5–18 Uhr, um