Systems Biogeochemistry of Major Marine Biomes. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Systems Biogeochemistry of Major Marine Biomes - Группа авторов страница 19
33 Bulow, S.E., Rich, J.J., Naik, H.S. et al. (2010). Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone. Deep Sea Research Part I: Oceanographic Research Papers 57 (3): 384–393. https://doi.org/10.1016/j.dsr.2009.10.014
34 Callbeck, C.M., Lavik, G., Ferdelman, T.G. et al. (2018). Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nature Communications 9 (1): 1–11. https://doi.org/10.1038/s41467‐018‐04041‐x
35 Canfield, D.E. and Thamdrup, B. (1994). The production of 34S‐depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266: 1973–1975. https://doi.org/10.1126/science.11540246
36 Canfield, D.E., Kristensen, E. and Thamdrup, B. (2005). The sulfur cycle. Advances in Marine Biology 48: 313–381. https://doi.org/10.1016/S0065‐2881(05)48009‐8
37 Canfield, D.E., Stewart, F.J., Thamdrup, B. et al. (2010). A cryptic sulfur cycle in oxygen‐minimum–zone waters off the Chilean coast. Science 330 (6009): 1375–1378. https://doi.org/10.1126/science.1196889
38 Capone, D.G. and Knapp, A.N. (2007). Oceanography: a marine nitrogen cycle fix? Nature 445 (7124): 159. https://doi.org/10.1038/445159a
39 Chen, K.Y. and Morris, J.C. (1972). Kinetics of oxidation of aqueous sulfide by O2. Environmental Science and Technology 6 (6): 529–537. https://doi.org/10.1021/es60065a008
40 Chronopoulou, P.M., Shelley, F., Pritchard, W.J. et al. (2017). Origin and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone. The ISME Journal 11 (6): 1386–1399. https://doi.org/10.1038/ismej.2017.6
41 Cowie, G. (2005). The biogeochemistry of Arabian Sea surficial sediments: a review of recent studies. Progress in Oceanography 65 (2 –4): 260 –289. https://doi.org/10.1016/j.pocean.2005.03.003
42 Cowie, G.L. and Levin, L.A. (2009). Benthic biological and biogeochemical patterns and processes across an oxygen minimum zone (Pakistan margin, NE Arabian Sea). Deep Sea Research Part II: Topical Studies in Oceanography 56 (6–7): 261–270. https://doi.org/10.1016/j.dsr2.2008.10.001
43 Crowe, S.A., Cox, R.P., Jones, C. et al. (2018). Decrypting the sulfur cycle in oceanic oxygen minimum zones. The ISME Journal 12 (9): 2322–2329. https://doi.org/10.1038/s41396‐018‐0149‐2
44 Dale, A.W., Sommer, S., Lomnitz, U. et al. (2015). Organic carbon production, mineralisation and preservation on the Peruvian margin. Biogeosciences 12 (5): 1537–1559. https://doi.org/10.5194/bg‐12‐1537‐2015
45 Dale, A.W., Sommer, S., Lomnitz, U. et al. (2016). Biological nitrate transport in sediments on the Peruvian margin mitigates benthic sulfide emissions and drives pelagic N loss during stagnation events. Deep Sea Research Part I: Oceanographic Research Papers 112: 123–136. https://doi.org/10.1016/j.dsr.2016.02.013
46 Dalsgaard, T., Stewart, F.J., Thamdrup, B., et al. and (2014). Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. Marine Biology 5 (6): https://doi.org/10.1128/mBio.01966‐14
47 Dean, W.E., Gardner, J.V. and Anderson, R.Y. (1994). Geochemical evidence for enhanced preservation of organic matter in the oxygen minimum zone of the continental margin of northern California during the late Pleistocene. Paleoceanography 9 (1): 47–61. https://doi.org/10.1029/93PA02829
48 Deutsch, C., Brix, H., Ito, T., Frenzel, H. et al. (2011). Climate‐forced variability of ocean hypoxia. Science 333 (6040): 336–339. https://doi.org/10.1126/science.1202422
49 Divya, B., Soumya, K.V. and Nair, S. (2010). 16SrRNA and enzymatic diversity of culturable bacteria from the sediments of oxygen minimum zone in the Arabian Sea. Antonie van Leeuwenhoek 98 (1): 9–18. https://doi.org/10.1007/s10482‐010‐9423‐7
50 Eckert, T., Brunner, B., Edwards, E.A. et al. (2011). Microbially mediated reoxidation of sulfide during dissimilatory sulfate reduction by Desulfobacter latus. Geochimica et Cosmochimica Acta 75: 3469–3485. https://doi.org/10.1016/j.gca.2011.03.034
51 Eglinton, T.I., Irvine, J.E., Vairavamurthy, A. et al. (1994). Formation and diagenesis of macromolecular organic sulfur in Peru margin sediments. Organic Geochemistry 22: 781–799. https://doi.org/10.1016/0146‐6380(94)90139‐2
52 Emeis, K.C., Morse, J.W. and Mays, L.L. (1991). Organic carbon, reduced sulfur and iron in Miocene to Holocene upwelling sediments from the Oman and Benguela upwelling systems. In: Proceedings of the Ocean Drilling Program, Scientific Results 117: 517–527. College Station, TX: Ocean Drilling Program https://doi.org/10.2973/odp. proc. sr.117.155.1991
53 Ferdelman, T.G., Lee, C., Pantoja, S. et al. (1997). Sulfate reduction and methanogenesis in a Thioploca‐dominated sediment off the coast of Chile. Geochimica et Cosmochimica Acta 61 (15): 3065–3079. https://doi.org/10.1016/S0016‐7037(97)00158‐0
54 Fernandes, S., Mazumdar, A., Bhattacharya, S. et al. (2018). Enhanced carbon‐sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center. Scientific Reports 8 (1): 1–15. https://doi.org/10.1038/s41598‐018‐27002‐2
55 Fernandes, S., Mazumdar, A., Peketi, A. et al. (2020). Sulfidization processes in seasonally hypoxic shelf sediments: a study off the West coast of India. Marine and Petroleum Geology 117: 104353. https://doi.org/10.1016/j.marpetgeo.2020.104353
56 Finster, K.W. and Kjeldsen, K.U. (2010). Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate‐reducing bacteria isolated from the oxygen minimum zone off the coast of Peru. Antonie van Leeuwenhoek 97 (3): 221–229. https://doi.org/10.1007/s10482‐009‐9403‐y