Systems Biogeochemistry of Major Marine Biomes. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Systems Biogeochemistry of Major Marine Biomes - Группа авторов страница 22
109 Middelburg, J.J. and Levin, L.A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences 6 (7): 1273–1293. https://doi.org/10.5194/bg‐6‐1273‐2009
110 Moffitt, S.E., Hill, T.M., Roopnarine, P.D. et al. (2015). Response of seafloor ecosystems to abrupt global climate change. Proceedings of the National Academy of Sciences 112 (15): 4684–4689. https://doi.org/10.1073/pnas.1417130112
111 Molina, V., Farías, L., Eissler, Y. et al. (2005). Ammonium cycling under a strong oxygen gradient associated with the Oxygen Minimum Zone off northern chile (~ 23 S). Marine Ecology Progress Series 288: 35–43. https://doi.org/10.3354/meps288035
112 Molina, V., Ulloa, O., Farías, L. et al. and (2007). Ammonia‐oxidizing β‐proteobacteria from the oxygen minimum zone off northern Chile. Applied and Environmental Microbiology 73 (11): 3547–3555. https://doi.org/10.1128/AEM.02275‐06
113 More, K.D., Orsi, W.D., Galy, V. et al and. (2018). A 43 kyr record of protist communities and their response to oxygen minimum zone variability in the Northeastern Arabian Sea. Earth and Planetary Science Letters 496: 248–256. https://doi.org/10.1016/j.epsl.2018.05.045
114 Mossmann, J.R., Aplin, A.C., Curtis, C.D. et al. (1991). Geochemistry of inorganic and organic sulphur in organic‐rich sediments from the Peru Margin. Geochimica et Cosmochimica Acta 55 (12): 3581–3595. https://doi.org/10.1016/0016‐7037(91)90057‐C
115 Müller, F.L. (2018). Exploring the potential role of terrestrially derived humic substances in the marine biogeochemistry of iron. Frontiers in Earth Science 6: 159. https://doi.org/10.3389/feart.2018.00159
116 Mullins, H.T., Thompson, J.B., McDougall, K. et al. (1985). Oxygen‐minimum zone edge effects: evidence from the central California coastal upwelling system. Geology 13 (7): 491–494. https://doi.org/10.1130/0091‐7613 (1985)13<491:OZEEEF>2.O;2
117 Naik, R., Naqvi, S.W.A. and Araujo, J. (2017). Anaerobic carbon mineralisation through sulphate reduction in the inner shelf sediments of eastern Arabian Sea. Estuaries and Coasts 40 (1): 134–144. https://doi.org/10.1007/s12237‐016‐0130‐0
118 Naqvi, S.W.A. (1991). Geographical extent of denitrification in the Arabian Sea in relation to physical processes. Oceanologica Acta 14: 281–290.
119 Naqvi, S.W.A., Jayakumar, D.A., Narvekar, P.V. et al. (2000). Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf. Nature 408: 346–349. https://doi.org/10.1038/35042551
120 Naqvi, S.W.A., Naik, H., Pratihary, A. et al. (2006). Coastal versus open‐ocean denitrification in the Arabian Sea, Biogeosciences 3: 621–633. https://doi.org/10.5194/bg‐3‐621‐200
121 Naqvi, S.W.A., Naik, H., Jayakumar, A. et al. (2009). Seasonal anoxia over the western Indian continental shelf. Indian Ocean Biogeochemical Processes and Ecological Variability 185: 333–345. https://doi.org/10.1029/2008GM000745
122 Naqvi, S.W.A., Bange, H.W., Farias, L. et al. (2010a). Marine hypoxia/anoxia as a source of CH4 and N2O. Biogeosciences 7: 2159–219. https://doi.org/10.5194/bg‐7‐2159‐2010
123 Naqvi, S.W.A., Moffett, J.W., Gauns, M.U. et al. (2010b). The Arabian Sea as a high‐nutrient, low‐chlorophyll region during the late Southwest Monsoon. Biogeosciences 7 (7): 2091–2100. https://doi.org/10.5194/bg‐7‐2091‐2010
124 and Neira, C., Sellanes, J., Levin, L.A. et al. (2001). Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep Sea Research Part I: Oceanographic Research Papers 48 (11): 2453–2472. https://doi.org/10.1016/S0967‐0637 (01)00018‐8
125 Neira, C., Ingels, J., Mendoza, G., et al. (2018). Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica. Frontiers in Marine Science 5: 448. https://doi.org/10.3389/fmars.2018.00448
126 Nielsen, L.P., Risgaard‐Petersen, N., Fossing, H. et al. (2010). Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463: 1071–1074. https://doi.org/10.1038/nature08790
127 Nierop, K.G., Reichart, G.J., Veld, H. et al. (2017). The influence of oxygen exposure time on the composition of macromolecular organic matter as revealed by surface sediments on the Murray Ridge (Arabian Sea). Geochimica et Cosmochimica Acta 206: 40–56. https://doi.org/10.1016/j.gca.2017.02.032
128 Niewöhner, C., Hensen, C., Kasten, S. et al. (1998). Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et cosmochimica Acta 62 (3): 455–464. https://doi.org/10.1016/S0016‐7037 (98)00055‐6
129 Pack, M.A., Heintz, M.B., Reeburgh, W.S., et al. (2015). Methane oxidation in the eastern tropical North Pacific Ocean water column. Journal of Geophysical Research: Biogeosciences 120 (6): 1078–1092. https://doi.org/10.1002/2014JG002900
130 Padilla, C.C., Bristow, L.A., Sarode, N. et al. (2016). NC10 bacteria in marine oxygen minimum zones. The ISME Journa, 10 (8): 2067–2071. https://doi.org/10.1038/ismej.2015.262
131 Padilla, C.C., Bertagnolli, A.D., Bristow, L.A. et al. (2017). Metagenomic binning recovers a transcriptionally active Gammaproteobacterium linking methanotrophy to partial denitrification in an anoxic oxygen minimum zone. Frontiers in Marine Science 4: 23. https://doi.org/10.3389/fmars.2017.00023
132 Pajares, S., Soto‐Jiménez, M.F. and Merino‐Ibarra, M. (2019). Molecular and isotopic evidence of the distribution of nitrogen‐cycling microbial communities in the oxygen minimum zone of the Tropical Mexican Pacific. FEMS Microbiology Ecology 95 (10): p.fiz143. https://doi.org/10.1093/femsec/fiz143
133 Paropkari, A.L., Babu, C.P. and Mascarenhas, A. (1992). A critical evaluation of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments. Marine Geology 107: 213–226. https://doi.org/10.1016/0025‐3227 (92)90168‐H
134 Paropkari,