Drug Transporters. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Drug Transporters - Группа авторов страница 34
57 [57] Zhang Q, Zhang Y, Diamond S, Boer J, Harris JJ, Li Y, Rupar M, Behshad E, Gardiner C, Collier P, Liu P, Burn T, Wynn R, Hollis G, Yeleswaram S. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke's encephalopathy. Drug Metab Dispos 2014; 42(10):1656–1662.
58 [58] Vora B, Green EAE, Khuri N, Ballgren F, Sirota M, Giacomini KM. Drug‐nutrient interactions: discovering prescription drug inhibitors of the thiamine transporter ThTR‐2 (SLC19A3). Am J Clin Nutr 2020; 111(1):110–121.
59 [59] Mimura Y, Yasujima T, Ohta K, Inoue K, Yuasa H. Functional identification of plasma membrane monoamine transporter (PMAT/SLC29A4) as an atenolol transporter sensitive to flavonoids contained in apple juice. J Pharm Sci 2017; 106(9):2592–2598.
60 [60] Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton‐stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 2007; 35(10):1956–1962.
61 [61] Duan H, Hu T, Foti RS, Pan Y, Swaan PW, Wang J. Potent and selective inhibition of plasma membrane monoamine transporter by HIV protease inhibitors. Drug Metab Dispos 2015; 43(11):1773–1780.
62 [62] Reidling JC, Lambrecht N, Kassir M, Said HM. Impaired intestinal vitamin B1 (thiamin) uptake in thiamin transporter‐2‐deficient mice. Gastroenterology 2010; 138(5):1802–1809.
63 [63] Oishi K, Hofmann S, Diaz GA, Brown T, Manwani D, Ng L, Young R, Vlassara H, Ioannou YA, Forrest D, Gelb BD. Targeted disruption of Slc19a2, the gene encoding the high‐affinity thiamin transporter Thtr‐1, causes diabetes mellitus, sensorineural deafness and megaloblastosis in mice. Hum Mol Genet 2002; 11(23):2951–2960.
64 [64] Duan H, Wang J. Impaired monoamine and organic cation uptake in choroid plexus in mice with targeted disruption of the plasma membrane monoamine transporter (Slc29a4) gene. J Biol Chem 2013; 288(5):3535–3544.
65 [65] Gilman TL, George CM, Vitela M, Herrera‐Rosales M, Basiouny MS, Koek W, Daws LC. Constitutive plasma membrane monoamine transporter (PMAT, Slc29a4) deficiency subtly affects anxiety‐like and coping behaviours. Eur J Neurosci 2018; 48(1): 1706–1716.
66 [66] Wei R, Gust SL, Tandio D, Maheux A, Nguyen KH, Wang J, Bourque S, Plane F, Hammond JR. Deletion of murine slc29a4 modifies vascular responses to adenosine and 5‐hydroxytryptamine in a sexually dimorphic manner. Physiol Rep 2020; 8(5):e14395.
67 [67] Online Mendelian Inheritance in Man. OMIM® [Internet]. Available at https://omim.org/. Accessed December 3, 2020.
68 [68] Xian X, Liao L, Shu W, Li H, Qin Y, Yan J, Luo J, Lin FQ. A novel mutation of SLC19A2 in a Chinese Zhuang ethnic family with thiamine‐responsive megaloblastic anemia. Cell Physiol Biochem 2018; 47(5):1989–1997.
69 [69] Scharfe C, Hauschild M, Klopstock T, Janssen AJ, Heidemann PH, Meitinger T, Jaksch M. A novel mutation in the thiamine responsive megaloblastic anaemia gene SLC19A2 in a patient with deficiency of respiratory chain complex I. J Med Genet 2000; 37(9):669–673.
70 [70] Subramanian VS, Marchant JS, Said HM. Biotin‐responsive basal ganglia disease‐linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2. Am J Physiol Cell Physiol 2006; 291(5):C851–C859.
71 [71] Ozand PT, Gascon GG, Al Essa M, Joshi S, Al Jishi E, Bakheet S, Al Watban J, Al‐Kawi MZ, Dabbagh O. Biotin‐responsive basal ganglia disease: a novel entity. Brain 1998; 121 (Pt 7):1267–1279.
72 [72] Vlasova TI, Stratton SL, Wells AM, Mock NI, Mock DM. Biotin deficiency reduces expression of SLC19A3, a potential biotin transporter, in leukocytes from human blood. J Nutr 2005; 135(1):42–47.
73 [73] Kono S, Miyajima H, Yoshida K, Togawa A, Shirakawa K, Suzuki H. Mutations in a thiamine‐transporter gene and Wernicke's‐like encephalopathy. N Engl J Med 2009; 360(17):1792–1794.
74 [74] Adamsen D, Ramaekers V, Ho HT, Britschgi C, Rüfenacht V, Meili D, Bobrowski E, Philippe P, Nava C, Van Maldergem L, Bruggmann R, Walitza S, Wang J, Grünblatt E, Thöny B. Autism spectrum disorder associated with low serotonin in CSF and mutations in the SLC29A4 plasma membrane monoamine transporter (PMAT) gene. Mol Autism 2014; 5:43.
75 [75] Dawed AY, Zhou K, van Leeuwen N, Mahajan A, Robertson N, Koivula R, Elders PJM, Rauh SP, Jones AG, Holl RW, Stingl JC, Franks PW, Mccarthy MI, ‘T Hart LM, Pearson ER, Consortium ID. Variation in the plasma membrane monoamine transporter (PMAT) (Encoded by SLC29A4) and organic cation transporter 1 (OCT1) (Encoded by SLC22A1) and gastrointestinal intolerance to metformin in type 2 diabetes: an IMI DIRECT study. Diabetes Care 2019; 42(6):1027–1033.
76 [76] Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H. Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 2002; 277(39):36262–36271.
77 [77] Eraly SA, Nigam SK. Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters. Biochem Biophys Res Commun 2002; 297(5):1159–1166.
78 [78] Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier MH, Wu W, Nigam SK. Evolutionary analysis and classification of OATs, OCTs, OCTNs, and other SLC22 transporters: structure‐function implications and analysis of sequence motifs. PLoS One 2015; 10(11):e0140569.
79 [79] Yee SW, Buitrago D, Stecula A, Ngo HX, Chien HC, Zou L, Koleske ML, Giacomini KM. Deorphaning a solute carrier 22 family member, SLC22A15, through functional genomic studies. FASEB J 2020; 34(12):15734–15752.
80 [80] Tamai I, Yabuuchi H, Nezu J, Sai Y, Oku A, Shimane M, Tsuji A. Cloning and characterization of a novel human pH‐dependent organic cation transporter, OCTN1. FEBS Lett 1997; 419(1):107–111.
81 [81] Urban TJ, Yang C, Lagpacan LL, Brown C, Castro RA, Taylor TR, Huang CC, Stryke D, Johns SJ, Kawamoto M, Carlson EJ, Ferrin TE, Burchard EG, Giacomini KM. Functional effects of protein sequence polymorphisms in the organic cation/ergothioneine transporter OCTN1 (SLC22A4). Pharmacogenet Genomics 2007; 17(9):773–782.
82 [82] Eder K, Ringseis R. The role of peroxisome proliferator‐activated receptor alpha in transcriptional regulation of novel organic cation transporters. Eur J Pharmacol 2010; 628(1–3):1–5.
83 [83] Kato Y, Sai Y, Yoshida K, Watanabe C, Hirata T, Tsuji A. PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2. Mol Pharmacol 2005; 67(3):734–743.
84 [84] Kato Y, Kubo Y, Iwata D, Kato S, Sudo T, Sugiura T, Kagaya T, Wakayama T, Hirayama A, Sugimoto M, Sugihara K, Kaneko S, Soga T, Asano M, Tomita M, Matsui T, Wada M, Tsuji A. Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm Res 2010; 27(5):832–840.
85 [85] Shinozaki Y, Furuichi K, Toyama T, Kitajima S, Hara A, Iwata Y, Sakai N, Shimizu M, Kaneko S, Isozumi N, Nagamori S, Kanai Y, Sugiura T, Kato Y, Wada, T. Impairment of the carnitine/organic cation transporter 1‐ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease. Kidney Int 2017; 92(6):1356–1369.
86 [86] Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros‐Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen‐Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham