Drug Transporters. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Drug Transporters - Группа авторов страница 35

Drug Transporters - Группа авторов

Скачать книгу

J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo‐De‐Santa‐Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido‐Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 2016; 167(5):1415–1429.e19.

      87 [87] Draisma HHM, Pool R, Kobl M, Jansen R, Peters en AK, Vaarhorst AAM, Yet I, Haller T, Demirkan A, Esko T, Zhu G, Böhringer S, Beekman M, Van Klinken JB, Römisch‐Margl W, Prehn C, Adamski J, De Craen AJM, Van Leeuwen EM, Amin N, Dharuri H, Westra HJ, Franke L, De Geus EJC, Hottenga JJ, Willemsen G, Henders AK, Montgomery GW, Nyholt DR, Whitfield JB, Penninx BW, Spector TD, Metspalu A, Slagboom PE, Van Dijk KW, ‘T Hoen PAC, Strauch K, Martin NG, Van Ommen GB, Illig T, Bell JT, Mangino M, Suhre K, Mccarthy MI, Gieger C, Isaacs A, Van Duijn CM, Boomsma DI. Genome‐wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat Commun 2015; 6:7208.

      88 [88] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer‐Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce‐Hoffman E, Zappala Z, O’Donnell‐Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano‐Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, Macarthur DG, Consortium GAD. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020; 581(7809):434–443.

      89 [89] Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, Brett CM, Burchard EG, Giacomini KM. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther 2008; 83(3):416–421.

      90 [90] Kou L, Sun R, Ganapathy V, Yao Q, Chen R. Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin Ther Targets 2018; 22(8):715–726.

      91 [91] Lancaster CS, Hu C, Franke RM, Filipski KK, Orwick SJ, Chen Z, Zuo Z, Loos WJ, Sparreboom A. Zuo Z, Loos WJ, Sparreboom A. Cisplatin‐induced downregulation of OCTN2 affects carnitine wasting. Clin Cancer Res 2010; 16(19):4789–4799.

      92 [92] D'Argenio G, Petillo O, Margarucci S, Torpedine A, Calarco A, Koverech A, Boccia A, Paolella G, Peluso G. Colon OCTN2 gene expression is up‐regulated by peroxisome proliferator‐activated receptor gamma in humans and mice and contributes to local and systemic carnitine homeostasis. J Biol Chem 2010; 285(35):27078–27087.

      93 [93] Li P, Wang Y, Luo J, Zeng Q, Wang M, Bai M, Zhou H, Wang J, Jiang H. Downregulation of OCTN2 by cytokines plays an important role in the progression of inflammatory bowel disease. Biochem Pharmacol 2020; 178:114115.

      94 [94] Koizumi T, Nikaido H, Hayakawa J, Nonomura A, Yoneda T. Infantile disease with microvesicular fatty infiltration of viscera spontaneously occurring in the C3H‐H‐2(0) strain of mouse with similarities to Reye's syndrome. Lab Anim 1988; 22(1):83–87.

      95 [95] Yokogawa K, Higashi Y, Tamai I, Nomura M, Hashimoto N, Nikaido H, Hayakawa J, Miyamoto K, Tsuji A. Decreased tissue distribution of L‐carnitine in juvenile visceral steatosis mice. J Pharmacol Exp Ther 1999; 289(1):224–230.

      96 [96] Shekhawat PS, Srinivas SR, Matern D, Bennett MJ, Boriack R, George V, Xu H, Prasad PD, Roon P, Ganapathy V. Spontaneous development of intestinal and colonic atrophy and inflammation in the carnitine‐deficient jvs (OCTN2(−/−)) mice. Mol Genet Metab 2007; 92(4):315–324.

      97 [97] Longo N. Primary carnitine deficiency and newborn screening for disorders of the carnitine cycle. Ann Nutr Metab 2016; 68 Suppl 3:5–9.

      98 [98] Guevara‐Campos J, González‐Guevara L, Guevara‐González J, Cauli O. First case report of primary carnitine deficiency manifested as intellectual disability and autism spectrum disorder. Brain Sci 2019; 9(6):137.

      99 [99] Ferdinandusse S, Te Brinke H, Ruiter JPN, Haasjes J, Oostheim W, van Lenthe H, Ijlst L, Ebberink MS, Wanders RJA, Vaz FM, Waterham HR. A mutation creating an upstream translation initiation codon in SLC22A5 5'UTR is a frequent cause of primary carnitine deficiency. Hum Mutat 2019; 40(10):1899–1904.

      100 [100] Long T, Hicks M, Yu HC, Biggs WH, Kirkness EF, Menni C, Zierer J, Small KS, Mangino M, Messier H, Brewerton S, Turpaz Y, Perkins BA, Evans AM, Miller LA, Guo L, Caskey CT, Schork NJ, Garner C, Spector TD, Venter JC, Telenti A. Whole‐genome sequencing identifies common‐to‐rare variants associated with human blood metabolites. Nat Genet 2017; 49(4):568–578.

      101 [101] Rhee EP, Ho JE, Chen MH, Shen D, Cheng S, Larson MG, Ghorbani A, Shi X, Helenius IT, O’Donnell CJ, Souza AL, Deik A, Pierce KA, Bullock K, Walford GA, Vasan RS, Florez JC, Clish C, Yeh JR, Wang TJ, Gerszten RE. A genome‐wide association study of the human metabolome in a community‐based cohort. Cell Metab 2013; 18(1):130–143.

      102 [102] Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, Schoech A, Pasaniuc B, Price AL. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet 2019; 104(1):65–75.

      103 [103] Chmielewska K, Dzierzbicka K, Inkielewicz‐Stępniak I, Przybyłowska M. Therapeutic potential of carnosine and its derivatives in the treatment of human diseases. Chem Res Toxicol 2020; 33(7):1561–1578.

      104 [104] Zhu G, Qian M, Lu L, Chen Y, Zhang X, Wu Q, Liu Y, Bian Z, Yang Y, Guo S, Wang J, Pan Q, Sun F. O‐GlcNAcylation of YY1 stimulates tumorigenesis in colorectal cancer cells by targeting SLC22A15 and AANAT. Carcinogenesis 2019; 40(9):1121–1131.

      105 [105] Aouida M, Poulin R, Ramotar D. The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin‐A5. J Biol Chem 2010; 285(9):6275–6284.

      106 [106] Sato N, Ito K, Onogawa T, Akahira J, Unno M, Abe T, Niikura H, Yaegashi N. Expression of organic cation transporter SLC22A16 in human endometria. Int J Gynecol Pathol 2007; 26(1):53–60.

      107 [107] Wu Y, Hurren R, MacLean N, Gronda M, Jitkova Y, Sukhai MA, Minden MD, Schimmer AD. Carnitine transporter CT2 (SLC22A16) is over‐expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells. Apoptosis 2015; 20(8):1099–1108.

      108 [108] Lal S, Wong ZW, Jada SR, Xiang X, Chen Shu X, Ang PC, Figg WD, Lee EJ, Chowbay B. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics 2007; 8(6):567–575.

      109 [109] Januszewicz E, Pajak B, Gajkowska B, Samluk L, Djavadian RL, Hinton BT, Nałecz KA. Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up‐regulated by peroxisome proliferators‐activator receptor agonist. Int J Biochem Cell Biol 2009; 41(12):2599–2609.

      110 [110] Scalise M, Galluccio M, Pochini L, Indiveri C. Over‐expression in Escherichia coli, purification and reconstitution in liposomes of the third member of the OCTN sub‐family: the mouse carnitine transporter OCTN3. Biochem Biophys Res Commun 2012; 422(1):59–63.

      111 [111] Durán JM, Peral MJ, Calonge ML, Ilundáin AA. OCTN3: a Na+ – independent L – carnitine transporter in enterocytes basolateral membrane. J Cell Physiol 2005; 202(3):929–935.

      Lauren

Скачать книгу