Wheat. Peter R. Shewry
Чтение книги онлайн.
Читать онлайн книгу Wheat - Peter R. Shewry страница 27
45 Flintham, J.E. (2000). Different genetic components control coat‐imposed and embryo‐imposed dormancy in wheat. Seed Science Research 10: 43–50. https://doi.org/10.1017/S0960258500000052.
46 Ford, M. (1987). Quality requirements for milling and baking. In: Aspects of Applied Biology 15, Cereal Quality, 10–17. Association of Applied Biologists.
47 Fu, Y.‐B., Peterson, G.W., Horbach, C. et al. (2019). Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proceedings of the National Academy of Sciences 116 (40): 20002–20008. https://doi.org/10.1073/pnas.1909564116.
48 Fuller, D.Q., Willcox, G., and Allaby, R.G. (2012). Early agricultural pathways: moving outside the ‘core area’ hypothesis in Southwest Asia. Journal of Experimental Botany 63 (2): 617–633. https://doi.org/10.1093/jxb/err307.
49 Fullington, J.G., Miskelly, D.M., Wrigley, C.W. et al. (1987). Quality related endosperm proteins in sulfur‐deficient and normal wheat grain. Journal of Cereal Science 5: 233–246. https://doi.org/10.1016/S0733‐5210(87)80025‐5.
50 Garnett, T. (1883). The cultivation of wheat. In: Essays in Natural History and Agriculture. Chiswick Press.
51 Gbegbelegbe, S., Cammarano, D., Asseng, S. et al. (2017). Baseline simulation for global wheat production with CIMMYT mega‐environment specific cultivars. Field Crops Research 202: 122–135. https://doi.org/10.1016/j.fcr.2016.06.010.
52 Gegas, V.C., Nazari, A., Griffiths, S. et al. (2010). A genetic framework for grain size and shape variation in wheat. The Plant Cell 22: 1046–1056. https://doi.org/10.1105/tpc.110.074153.
53 Gill, B.S., Appels, R., Botha‐Oberholster, A.M. et al. (2004). A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics 168 (2): 1087–1096. https://doi.org/10.1534/genetics.104.034769.
54 Glover, N.M., Redestig, H., and Dessimz, C. (2016). Homoeologs: what are they and how do we infer them? Trends in Plant Science 21: 609–621. https://doi.org/10.1016/j.tplants.2016.02.005.
55 Gonzalez‐Thuillier, I., Salt, L., Chope, C. et al. (2015). Distribution of lipids in the grain of wheat (cv. Hereward) determined by lipidomic analysis of milling and pearling fractions. Journal of Agricultural and Food Chemistry 63: 10705–10716. https://doi.org/10.1021/acs.jafc.5b05289.
56 Gooding, M.J. (2009). The wheat crop. In: Wheat: Chemistry and Technology, 4e (eds. K. Khan and P.R. Shewry), 35–70. AACC International.
57 Gooding, M.J. (2017). The effects of growth environment and agronomy on grain quality. In: Cereal Grains, 2e (eds. C. Wrigley, I. Batey and D. Miskelly), 493–512. Woodhead Publishing https://doi.org/10.1016/B978‐0‐08‐100719‐8.00018‐8.
58 Gooding, M.J., Cosser, N.D., Thompson, A.J. et al. (1998). Sheep grazing and defoliation of contrasting varieties of organically grown winter wheat with and without undersowing. Grass and Forage Science 53 (1): 76–87. https://doi.org/10.1046/j.1365‐2494.1998.00106.x.
59 Guzman, C., Peña, R.J., Singh, R. et al. (2016). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied & Translational Genomics 11: 3–8. https://doi.org/10.1016/j.atg.2016.10.004.
60 Harrell, D.M., Wilhelm, W.W., and McMaster, G.S. (1993). Scales – a computer‐program to convert among 3 developmental stage scales for wheat. Agronomy Journal 85: 758–763. https://doi.org/10.2134/agronj1993.00021962008500030043x.
61 Harrell, D.M., Wilhelm, W.W., and McMaster, G.S. (1998). Scales 2: computer program to convert among developmental stage scales for corn and small grains. Agronomy Journal 90: 235–238. https://doi.org/10.2134/agronj1998.00021962009000020021x.
62 Hatcher, D.W., Lukow, O.M., and Dexter, J.E. (2006). Influence of environment on Canadian hard white spring wheat noodle quality. Cereal Foods World 51 (4): 184–190.
63 He, F., Pasan, R., and Shi, F. (2019). Exome sequencing highlights the role of wild‐relative introgression in shaping the adaptive landscape of the wheat genome. Nature Genetics 51: 896–904. https://doi.org/10.1038/s41588‐019‐0382‐2.
64 Hemery, Y., Rouau, X., Lullien‐Pellerin, V. et al. (2007). Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science 46: 327–347. https://doi.org/10.1016/j.jcs.2007.09.008.
65 Henry, A.G., Brooks, A.S., and Piperno, D.R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proceedings of the National Academy of Science, USA 108: 486–491. https://doi.org/10.1073/pnas.1016868108.
66 Henry, A.G., Brooks, A.S., and Piperno, D.R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. Journal of Human Evolution 69: 44–54. https://doi.org/10.1016/j.jhevol.2013.12.014.
67 Hillel, D. (1991). Out of the Earth: Civilization and the Life of the Soil. Aurum Press Ltd.
68 Hook, S.C. (1984). Specific weight and wheat quality. Journal of the Science of Food and Agriculture 35 (10): 1136–1141. https://doi.org/10.1002/jsfa.2740351013.
69 Huang, S. and Miskelly, D. (2019). Steamed bread – a review of manufacturing, flour quality requirements, and quality evaluation. Cereal Chemistry 96 (1): 8–22. https://doi.org/10.1002/cche.10096.
70 Huang, S., Sirikhachornkit, A., Su, X. et al. (2002). Genes encoding plastid acetyl‐CoA carboxylase and 3‐phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proceedings of the National Academy of Sciences 99 (12): 8133–8138. https://doi.org/10.1073/pnas.072223799.
71 IMF (2021). IMF Primary Commodity Prices. International Monetary Fund https://www.imf.org/en/Research/%20commodity‐prices.