RF/Microwave Engineering and Applications in Energy Systems. Abdullah Eroglu

Чтение книги онлайн.

Читать онлайн книгу RF/Microwave Engineering and Applications in Energy Systems - Abdullah Eroglu страница 31

RF/Microwave Engineering and Applications in Energy Systems - Abdullah Eroglu

Скачать книгу

right-parenthesis e Superscript italic j omega t Baseline right-brace"/>

      (1.118)upper F left-parenthesis r overbar right-parenthesis equals upper P left-parenthesis r overbar right-parenthesis e Superscript italic j phi left-parenthesis r overbar right-parenthesis

      This can be applied for vectorial function as

      (1.119)ModifyingAbove upper F With bar left-parenthesis r overbar right-parenthesis equals ModifyingAbove upper P With bar left-parenthesis r overbar right-parenthesis e Superscript italic j phi left-parenthesis r overbar right-parenthesis

      The representation of the time harmonic functions in phasor form provides several advantages. They convert the time domain differential equations to frequency domain algebraic equations. This can be better understood by studying the derivative property as follows. Let's take derivative function g(r,t) with respect to time as

      (1.121a)StartFraction partial-differential upper F left-parenthesis r overbar comma t right-parenthesis Over partial-differential t EndFraction left-right-arrow normal j omega upper F left-parenthesis r overbar right-parenthesis for scalars

      (1.121b)StartFraction partial-differential ModifyingAbove upper F With bar left-parenthesis r overbar comma t right-parenthesis Over partial-differential t EndFraction left-right-arrow normal j omega ModifyingAbove upper F With bar left-parenthesis r overbar right-parenthesis for vectors

      Example 1.6 Maxwell's Equations

      Derive the phasor representation of Maxwell's equations in free space with no source.

      Solution

      We begin with the equation given in (1.88) as

nabla times Re left-brace ModifyingAbove upper E With bar left-parenthesis r overbar right-parenthesis e Superscript italic j omega t Baseline right-brace equals minus Re left-brace normal j omega ModifyingAbove upper B With bar left-parenthesis r overbar right-parenthesis e Superscript italic j omega t Baseline right-brace

      or

nabla times upper E overbar plus normal j omega upper B overbar equals 0

      or

      (1.124)nabla times upper E overbar equals minus normal j omega upper B overbar

      (1.125)StartLayout 1st Row nabla times upper E overbar equals minus normal j omega upper B overbar 2nd Row nabla times upper H overbar equals upper J overbar plus normal j omega upper D overbar 3rd Row nabla dot upper D overbar equals rho Subscript v Baseline 4th Row nabla dot upper B overbar equals 0 EndLayout

      1 Zahn, M. (1987). Electromagnetic Field Theory: A Problem Solving Approach. Krieger Pub Co.

      2 Eroglu, A. (2010). Wave Propagation and Radiation in Gyrotropic and Anisotropic Media. Springer.

      Problem 1.1

      If K(1,2,0), L(2,5,0), and M(0,4,7) are given, calculate

      1 KL × KM

      2 the angle between KL and KM

      Problem 1.2

      Find vector AB in the Cartesian coordinate system if points A(2m,π,0) and B(2m,3π/2,0) are given in a cylindrical coordinate system.

      Problem 1.3

      If bold upper A bold equals minus 2 ModifyingAbove a With ampersand c period circ semicolon Subscript x Baseline plus 2 ModifyingAbove a With ampersand c period circ semicolon Subscript y Baseline 
						<noindex><p style= Скачать книгу