Analytical Methods for Environmental Contaminants of Emerging Concern. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Analytical Methods for Environmental Contaminants of Emerging Concern - Группа авторов страница 21

Analytical Methods for Environmental Contaminants of Emerging Concern - Группа авторов

Скачать книгу

style="font-size:15px;">      26 26 Kiefer, K., Müller, A., Singer, H., and Hollander, J. (2019). New relevant pesticide transformation products in groundwater detected using target and suspect screening for agricultural and urban micropollutants with LC-HRMS. Water Res. 165: 114972. doi: 10.1016/j.watres.2019.114972.

      27 27 Reemtsma, T., Alder, L., and Banasiak, U. (2013). Emerging pesticide metabolites in groundwater and surface water as determined by the application of a multimethod for 150 pesticide metabolites. Water Res. 47: 5535–5545. doi: 10.1016/j.watres.2013.06.031.

      28 28 Lopez-Ruiz, R., Romero-González, R., and Garrido-Frenich, A. (2019). Residues and dissipation kinetics of famoxadone and its metabolites in environmental water and soil samples under different conditions. Environ. Pollut. 252: 163–170. doi: 10.1016/j.envpol.2019.05.123.

      29 29 Tiwari, M.K. and Guha, S. (2013). Simultaneous analysis of endosulfan, chlorpyrifos, and their metabolites in natural soil and water samples using gas chromatography-tandem mass spectrometry. Environ. Monit. Assess. 185: 8451–8463. doi: 10.1007/s10661-013-3186-3.

      30 30 Peterson, M.A., McMaster, S.A., Riechers, D.E., Skelton, J., and Stahlman, P.W. (2016). 2,4-D past, present, and future: a review. Weed Technol. 30: 303–345. doi: 10.1614/wt-d-15-00131.1.

      31 31 Pietrzak, D., Kania, J., Kmiecik, E., Malina, G., and Wator, K. (2020). Fate of selected neonicotinoid insecticides in soil–water systems: current state of the art and knowledge gaps. Chemosphere 255 (126981). doi: 10.1016/j.chemosphere.2020.126981.

      32 32 Dereumeaux, C., Fillol, C., Quenel, P., and Denys, S. (2020). Pesticide exposures for residents living close to agricultural lands: a review. Environ. Int. 134: 105210. doi: 10.1016/j.envint.2019.105210.

      33 33 Nascimento, M.M., Da Rocha, G.O., and De Andrade, J.B. (2018). Pesticides in the atmospheric environment: an overview on their determination methodologies. Anal. Methods. 10: 4484–4504. doi: 10.1039/c8ay01327f.

      34 34 Stehle, S., Bline, A., Bub, S., Petschick, L.L., Wolfram, J., and Schulz, R. (2019). Aquatic pesticide exposure in the U.S. as a result of non-agricultural uses. Environ. Int. 133: 105234. doi: 10.1016/j.envint.2019.105234.

      35 35 European Environment Agency (2018). European waters. Assessment of status and pressures 2018. EEA Report No 7/2018. Available at: https://www.eea.europa.eu/publications/state-of-water. Accessed 14 December 2021.

      36 36 Sjerps, R.M.A., Kooij, P.J.F., van Loon, A., and Van Wezel, A.P. (2019). Occurrence of pesticides in Dutch drinking water sources. Chemosphere 235: 510–518. doi: 10.1016/j.chemosphere.2019.06.207.

      37 37 Pérez, D.J., Iturburu, F.G., Calderon, G., Oyesqui, L.A.E., De Gerónimo, E., and Aparicio, V.C. (2021). Ecological risk assessment of current-use pesticides and biocides in soils, sediments and surface water of a mixed land-use basin of the Pampas region, Argentina. Chemosphere 263: 128061. doi: 10.1016/j.chemosphere.2020.128061.

      38 38 Ordaz-Guillén, Y., Galíndez-Mayer, C.J., Ruiz-Ordaz, N., Juárez-Ramírez, C., Santoyo-Tepole, F., and Ramos-Monroy, O. (2014). Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation. Environ. Sci. Pollut. Res. 21: 8765–8773. doi: 10.1007/s11356-014-2809-8.

      39 39 Magnoli, K., Carranza, C.S., Aluffi, M.E., Magnoli, C.E., and Barberis, C.L. (2020). Herbicides based on 2,4-D: its behavior in agricultural environments and microbial biodegradation aspects. A review. Environ. Sci. Pollut. Res. 27: 38501–38512. doi: 10.1007/s11356-020-10370-6.

      40 40 Andreu, V. and Picó, Y. (2012). Determination of currently used pesticides in biota. Anal. Bioanal. Chem. 404: 2659–2681. doi: 10.1007/s00216-012-6331-x.

      41 41 Pelosi, C., Barot, S., Capowiez, Y., Hedde, M., and Vandenbulcke, F. (2014). Pesticides and earthworms: a review. Agron. Sustain. Dev. 34: 199–228. doi: 10.1007/s13593-013-0151-z.

      42 42 Schäfer, S., Buchmeier, G., Claus, E., Duester, L., Heininger, P., Körner, A., Mayer, P., Paschke, A., Rauert, C., Reifferscheid, G., Rüdel, H., Schlechtriem, C., Schröter-Kermani, C., Schudoma, D., Smedes, F., Steffen, D., and Vietoris, F. (2015). Bioaccumulation in aquatic systems: methodological approaches, monitoring and assessment. Environ. Sci. Eur. 27: 5. doi: 10.1186/s12302-014-0036-z.

      43 43 Olisah, C., Okoh, O.O., and Okoh, A.I. (2020). Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: a two-decade review. Heliyon 6: e03518. doi: 10.1016/j.heliyon.2020.e03518.

      44 44 Girones, L., Oliva, A.L., Marcovecchio, J.E., and Arias, A.H. (2020). Spatial distribution and ecological risk assessment of residual organochlorine pesticides (OCPs) in South American marine environments. Curr. Environ. Heal. Reports 7: 147–160. doi: 10.1007/s40572-020-00272-7.

      45 45 Lupi, L., Bedmar, F., Wunderlin, D.A., and Miglioranza, K.S.B. (2019). Levels of organochlorine pesticides in soils, mesofauna and streamwater from an agricultural watershed in Argentina. Environ. Earth Sci. 78: 1–9. doi: 10.1007/s12665-019-8579-3.

Скачать книгу