Analytical Methods for Environmental Contaminants of Emerging Concern. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Analytical Methods for Environmental Contaminants of Emerging Concern - Группа авторов страница 23
66 66 Sørensen, L., Silva, M.S., Meier, S., and Booth, A.M. (2015). Advances in miniaturization and increasing sensitivity in analysis of organic contaminants in marine biota samples. Trends Environ. Anal. Chem. 6–7: 39–47. doi: 10.1016/j.teac.2015.03.001.
67 67 Lundqvist, J., Von Brömssen, C., Rosenmai, A.K., Ohlsson, A., Le Godec, T., Jonsson, O., Kreuger, J., and Oskarsson, A. (2019). Assessment of pesticides in surface water samples from Swedish agricultural areas by integrated bioanalysis and chemical analysis. Environ. Sci. Eur. 31: 53. doi: 10.1186/s12302-019-0241-x.
68 68 Hashmi, T.A., Qureshi, R., Tipre, D., and Menon, S. (2019). Investigation of pesticide residues in water, sediments and fish samples from Tapi River, India as a case study and its forensic significance. Environ. Forensics. 21: 1–10. doi: 10.1080/15275922.2019.1693441.
69 69 Ruiz-Gil, L., Romero-González, R., Garrido Frenich, A., and Martínez Vidal, J.L. (2008). Determination of pesticides in water samples by solid phase extraction and gas chromatography tandem mass spectrometry. J. Sep. Sci. 31: 151–161. doi: 10.1002/jssc.200700299.
70 70 Xie, H., Chen, J., Huang, Y., Zhang, R., Chen, C.E., Li, X., and Kadokami, K. (2020). Screening of 484 trace organic contaminants in coastal waters around the Liaodong Peninsula, China: occurrence, distribution, and ecological risk. Environ. Pollut. 267: 115436. doi: 10.1016/j.envpol.2020.115436.
71 71 Wan, Y., Tran, T.M., Nguyen, V.T., Wang, A., Wang, J., and Kannan, K. (2021). Neonicotinoids, fipronil, chlorpyrifos, carbendazim, chlorotriazines, chlorophenoxy herbicides, bentazon, and selected pesticide transformation products in surface water and drinking water from northern Vietnam. Sci. Total Environ. 750: 141507. doi: 10.1016/j.scitotenv.2020.141507.
72 72 Fauvelle, V., Mazzella, N., Morin, S., Moreira, S., Delest, B., and Budzinski, H. (2015). Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for acidic herbicides and metabolites analysis in fresh water. Environ. Sci. Pollut. Res. 22: 3988–3996. doi: 10.1007/s11356-014-2876-x.
73 73 Tan, B., Xiong, J., Li, H., and You, J. (2020). Simultaneous analysis of current‐use pesticides and their transformation products in water using mixture‐sorbent solid phase extraction and high‐performance liquid chromatography–tandem mass spectrometry. J. Sep. Sci. 43: 2409–2418. doi: 10.1002/jssc.202000115.
74 74Čelić, M., Jaén-Gil, A., Briceño-Guevara, S., Rodríguez-Mozaz, S., Gros, M., and Petrovic, M. (2021). Extended suspect screening to identify contaminants of emerging concern in riverine and coastal ecosystems and assessment of environmental risks. J. Hazard. Mater. 404: 124102. doi: 10.1016/j.jhazmat.2020.124102.
75 75 Schulze, T., Ahel, M., Ahlheim, J., Ait-Aissa, S., Brion, F., Di Paolo, C., Froment, J., Hidasi, A.O., Hollender, J., Hollert, H., Hu, M., Klob, A., Koprivica, S., Krauss, M., Muz, M., Oswald, P., Petre, M., Schollée, J.E., Seiler, T.B., Shao, Y., Slobodnik, J., Sonavane, M., Suter, M.J.F., Tollefsen, K.E., Tousova, Z., Walz, J.H., and Brack, W. (2017). Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. Sci. Total Environ. 581–582: 350–358. doi: 10.1016/j.scitotenv.2016.12.140.
76 76 Hurtado-Sánchez, M.C., Romero-González, R., Rodríguez-Cáceres, M.I., Durán-Merás, I., and Garrido Frenich, A. (2013). Rapid and sensitive on-line solid phase extraction ultra-high-performance liquid chromatography-electrospray-tandem mass spectrometry analysis of pesticides in surface waters. J. Chromatogr. A 1305: 193–202. doi: 10.1016/j.chroma.2013.07.045.
77 77 Postigo, C., Ginebreda, A., Barbieri, M.V., Barceló, D., Martín-Alonso, J., Cal, A., Boleda, M.R., Otero, N., Carrey, R., Solà, V., Queralt, E., Isla, E., Casanovas, A., Frances, G., and López de Alda, M. (2021). Investigative monitoring of pesticide and nitrogen pollution sources in a complex multi-stressed catchment: the lower Llobregat River basin case study (Barcelona, Spain). Sci. Total Environ. 755: 142377. doi: 10.1016/j.scitotenv.2020.142377.
78 78 Barbieri, M.V., Monllor-Alcaraz, L.S., Postigo, C., and López de Alda, M. (2020). Improved fully automated method for the determination of medium to highly polar pesticides in surface and groundwater and application in two distinct agriculture-impacted areas. Sci. Total Environ. 745: 140650. doi: 10.1016/j.scitotenv.2020.140650.
79 79 Domínguez, I., Romero-González, R., Arrebola Liébanas, F.J., Martínez Vidal, J.L., and Garrido Frenich, A. (2016). Automated and semi-automated extraction methods for GC–MS determination of pesticides in environmental samples. Trends Environ. Anal. Chem. 12: 1–12. doi: 10.1016/j.teac.2016.09.001.
80 80 Abdel Ghani, S.B. and Hanafi, A.H. (2016). QuEChERS method combined with GC‒MS for pesticide residues determination in water. J. Anal. Chem. 71: 508–512. doi: 10.1134/S1061934816050117.
81 81 Garrido Frenich, A., Romero-González, R., Martínez Vidal, J.L., Martínez Ocaña, R., and Baquero Feria, P. (2011). Comparison of solid phase microextraction and hollow fiber liquid phase microextraction for the determination of pesticides in aqueous samples by gas chromatography triple quadrupole tandem mass spectrometry. Anal. Bioanal. Chem. 399: 2043–2059. doi: 10.1007/s00216-010-4236-0.
82 82