Biomolecules from Natural Sources. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Biomolecules from Natural Sources - Группа авторов страница 20
29 Dubey, K.V. et al. (2005). Adsorption–desorption process using wood–based activated carbon for recovery of biosurfactant from fermented distillery wastewater. Biotechnology Progress 21: 860–867.
30 Esders, T.W. and Light, R.J. (1972). Glucosyl and acetyItransferases involved in the biosynthesis of glycolipids from Candida bogoriensis. The Journal of Biological Chemistry 10, 247 (5): 1375–1386.
31 Espuny, M.J., Egido, S., Rodón, I., Manresa, A., and Mercadé, M.E. (1996). Nutritional requirements of a biosurfactant producing strain Rhodococcus sp 51T7. Biotechnology Letters 18 (5): 521–526.
32 Fracchia, L., Banat, J., Cavallo, J., Ceresa, M., and Banat, C.I.M. (2015). Potential therapeutic applications of microbial surface-active compounds. AIMS Bioengineering 2 (3): 144–162.
33 Franzetti, A., Gandolfi, I., Bestetti, G., Smyth, J.P.T., and Banat, I.M. (2010). Production and applications of trehalose lipid biosurfactants. European Journal of Lipid Science and Technology 112 (6): 617–627.
34 Gein, S.V., Kuyukina, M.S., Ivshina, I.B., Baeva, T.A., and Chereshnev, V.A. (2011). In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology 63: 559–566.
35 Geys, R., Soetaert, W., and Bogaert, I.V. (2014). Biotechnological opportunities in biosurfactant production. Current Opinion in Biotechnology 30: 66–72.
36 Groves, E., Dart, A.E., Covarelli, V., and Caron, E. (2008). Molecular mechanisms of phagocytic uptake in mammalian cells. Cellular and Molecular Life Sciences 65: 1957–1976.
37 Gudiña, E.J., Rangarajan, V., Sen, R., and Rodrigues, L.R. (2013). Potential therapeutic applications of biosurfactants. Trends in Pharmacological Sciences 34 (12): 667–675.
38 Hoq, M.M., Suzutani, T., Toyoda, T., Horiike, T., Yoshida, G., and Azuma, I.M. (1997). Role of gamma delta TCR + lymphocytes in the augmented resistance of trehalose 6,6’-dimycolate-treated mice to influenza virus infection. The Journal of General Virology 78: 1597–1603.
39 Im, J.H., Nakane, T., Yanagishita, H., Ikegami, T., and Kitamoto, D. (2001). Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin. BMC Biotechnology 1: 5.
40 Inaba, T., Tokumoto, Y., Miyazaki, Y., Inoue, N., Maseda, H., Nakajima-Kambe, T., Uchiyama, H., and Nomura, N. (2013). Analysis of genes for succinoyl trehalose lipid production and increasing production in Rhodococcus sp. strain SD-74. Applied and Environmental Microbiology 79: 7082–7890.
41 Iqbal, S., Khalid, Z.M., and Malik, K.A. (1995). Enhanced biodegradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray induced mutant of Pseudomonas aeruginosa. Letters in Applied Microbiology 21: 176–179.
42 Isoda, H., Kitamoto, D., Shinmoto, H., Matsumura, M., and Nakahara, T. (1997). Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Bioscience, Biotechnology, and Biochemistry 61 (4): 609–614.
43 Isoda, H., Shinmoto, H., Matsumura, M., and Nakahara, T. (1996). Succinoyl trehalose lipid induced differentiation of human monocytoid leukemic cell line U937 into monocyte–macrophages. Cytotechnology 19: 79–88.
44 Jain, N.K. and Roy, I. (2009). Effect of trehalose on protein structure. Protein Science 18 (1): 24–36.
45 Janek, T., Krasowska, A., Czyznikowska, Z., and Łukaszewicz, M. (2018). Trehalose lipid biosurfactant reduces adhesion of microbial pathogens to polystyrene and silicone surfaces: an experimental and computational approach. Frontiers in Microbiology 9 2441
46 Kadinov, B., Nikolova, B., Tsoneva, I., Semkova, S., Kabaivanova, L., and Dimitrova, D. (2020). Trehalose lipid biosurfactant reduced cancer cell viability but did not affect the isometric contraction of rat mesenteric arteries in vitro. International Journal Bioautomation 24 (1): 79–86.
47 Kitamoto, D., Isoda, H., and Nakahara, T. (2002). Functions and potential applications of glycolipid biosurfactants. Journal of Bioscience and Bioengineering 94 (3): 187–201.
48 Koch, A.K., Käppeli, O., Fiechter, A., and Reiser, J. (1991). Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. Journal of Bacteriology 173: 4212–4219.
49 Kretschmer, A., Bock, H., and Wagner, F. (1982). Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Applied and Environmental Microbiology 44 (4): 864–870.
50 Kügler, J. H. et al. (2014). Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Applied Microbiology and Biotechnology 98 (21): 8905–8915.
51 Kumari, S., Sekar, K.V., Nagasathya, A., Palanivel, S., and Nambaru, S. (2010). Effective biosurfactants production by Pseudomonas aeruginosa and its efficacy on different oils. Journal of Advanced Laboratory Research in Biology 1 (1): 31–34.
52 Kundu, D., Hazra, C., and Chaudhari, A. (2016a). Biodegradation of 2,6- dinitrotoluene and plant growth promoting traits by Rhodococcus pyridinivorans NT2: identification and toxicological analysis of metabolites and proteomic insights. Biocatalysis and Agricultural Biotechnology 8: 55–65.
53 Kundu, D., Hazra, C., and Chaudhari, A. (2016b). Bioremediation potential of Rhodococcus pyridinivorans NT2 in nitrotoluene-contaminated soils: the effectiveness of natural attenuation, biostimulation and bioaugmentation approaches. Soil and Sediment Contamination: An International Journal 25: 637–651.
54 Kundu, D., Hazra, C., Dandi, N., and Chaudhari, A. (2013). Biodegradation of 4- nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization. Biodegradation 24: 775–793.
55 Kuyukina, M.S. and Ivshina, I.B. (2010). Rhodococcus biosurfactants: biosynthesis, properties, and potential applications. In: Biology of Rhodococcus (ed. H. Alvarez), Microbiology Monographs, vol 16, 291–313. Springer.
56 Kuyukina, M.S. and Ivshina, I.B. (2019). Production of trehalolipid biosurfactants by Rhodococcus. In: Biology of Rhodococcus (ed. H. Alvarez), Microbiology Monographs, vol 16, 271–298. Cham: Springer.
57 Kuyukina, M.S., Ivshina, I.B., Baeva, T.A., Kochina, O.A., Gein, S.V., and Chereshnev, V.A. (2015). Trehalolipid biosurfactants from nonpathogenic Rhodococcus actinobacteria with diverse immunomodulatory activities. New Biotechnology 25; 32 (6): 559–568.
58 Kuyukina, M.S., Ivshina, I.B., Gein, S.V., Baeva, T.A., and Chereshnev, V.A. (2007). In vitro immunomodalating acitivity of biosurfactant glycolipid complex from Rhodococcus rubber. Bulletin of Experimental Biology and Medicine 144 (3): 326–330.
59 Kuyukina, M.S., Ivshina, I.B., Korshunova, I.O., Stukova, G.I., and Krivoruchko, A.V. (2016). Diverse effects of a biosurfactant from Rhodococcus ruber IEGM 231 on the adhesion of resting and growing bacteria to polystyrene. AMB Express 6 (14): 1–12.
60 Kuyukina, M.S., Ivshina, I.B., Philp, J.C., Christofi, N., Dunbar, S.A., and Ritchkova, M.I. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. Journal of Microbiological Methods 46: 149–156.
61 Kuyukina, M.S., Varushkina, A.M., and Ivshina, I.B. (2020). Effects of electroporation on antibiotic susceptibility and adhesive activity to n-hexadecane in Rhodococcus ruber IEGM 231. Applied Biochemistry and Microbiology 56: 729–735.