Biomolecules from Natural Sources. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Biomolecules from Natural Sources - Группа авторов страница 33
2.10 Conclusion
The biopolymers contain eight groups based on their chemical structure. A ninth group could be added to include the monomers that are produced naturally and polymerized chemically such as polylactic acid. The polymeric forms of the inorganic structures are in need of more investigation. There are some unique criteria for biopolymers because they are derived from nature. They are degradable, bioavailable, compatible, renewable, safe, etc., so they are “green”. They are the main income resources for a number of countries. Their applications are diverse. Some have not yet been commercialize due to petroleum oil-based synthetic polymers. Some species of the biopolymer have attracted attention in different times. For example, polyhydroxyalkanoates attract attention after the oil crises in 1973. Being produced by different types of biological cells their control through biochemical engineering or through different molecular tools enabled better management of their production in their mother wild type host cells or in foreigner cells. We should keep the different schools of biopolymer active. The ones which not being focused on today might be in great demand in the future.
Acknowledgement
The author acknowledges his mentors Professor Dr. Alexander Steinbüchel and Professor Dr. Bernd Rhem and the entire membership of the institute of Molecular Mikrobiologie und Biotechnologie, Mathematish-Naturwissenschaftlichen Fakultät der Westfälische Wilhelms-Universitüt Münster, Germany. Special thanks to the members of lab 06. The author acknowledges the DAAD for the grant provided as a PhD scholarship.
Conflict of Interest
The author declares that there is no any kind of conflict with any concerning this chapter
References
1 1 Ali, N.E., Kaddam, L.A., Alkarib, S.Y., Kaballo, B.G., Khalid, S.A., Higawee, A., AbdElhabib, A., AlaaAldeen, A., Phillips, A.O., and Saeed, A.M. (2020). Gum Arabic (Acacia Senegal) augmented total antioxidant capacity and reduced c-reactive protein among haemodialysis patients in phase II trial. International Journal of Nephrology 2020: 7214673.
2 2 Kaddam, L., Babiker, R., Ali, S., Satti, S., Ali, N., Elamin, M., Mukhtar, M., Elnimeiri, M., and Saeed, A. (2020). Potential role of Acacia Senegal (Gum Arabic) as immunomodulatory agent among newly diagnosed COVID 19 patients: a structured summary of a protocol for a randomised, controlled, clinical trial. Trials 21 (1): 766.
3 3 Kaddam, L.A. and Kaddam, A.S. (2020). Effect of Gum Arabic (Acacia senegal) on C-reactive protein level among sickle cell anemia patients. BMC Research Notes 13 (1): 162.
4 4 Amara, A.A. (2015). Kostenlose Viral Ghosts, Bacterial Ghosts, Microbial Ghosts and More (ed. A.A. Amara). Schüling Verlage Germany. ISBN: 978-3-86523-260-1.
5 5 Ahmed, A.S., Khalil, A., Ito, Y., van Loosdrecht, M.C.M., Santoro, D., Rosso, D., and Nakhla, G. (2021). Dynamic impact of cellulose and readily biodegradable substrate on oxygen transfer efficiency in sequencing batch reactors. Water Research 190: 116724.
6 6 Chaudhary, J., Thakur, S., Sharma, M., Gupta, V.K., and Thakur, V.K. (2020). Development of biodegradable agar-agar/gelatin-based superabsorbent hydrogel as an efficient moisture-retaining agent. Biomolecules 10 (6).
7 7 Dutta, S.D., Hexiu, J., Patel, D.K., Ganguly, K., and Lim, K.T. (2021). 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. International Journal of Biological Macromolecules 167: 644–658.
8 8 Hai, L., Choi, E.S., Zhai, L., Panicker, P.S., and Kim, J. (2020). Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging. International Journal of Biological Macromolecules 144: 491–499.
9 9 Ichimaru, H., Mizuno, Y., Chen, X., Nishiguchi, A., and Taguchi, T. (2020). Prevention of pulmonary air leaks using a biodegradable tissue-adhesive fiber sheet based on Alaska pollock gelatin modified with decanyl groups. Biomaterials Science 9: 861–883.
10 10 Li, M., Dong, Q., Xiao, Y., Du, Q., Huselsteind, C., Zhang, T., He, X., Tian, W., and Chen, Y. (2020). A biodegradable soy protein isolate-based waterborne polyurethane composite sponge for implantable tissue engineering. Journal of Materials Science: Materials in Medicine 31 (12): 120.
11 11 Olaiya, N.G., Nuryawan, A., Oke, P.K., Khalil, H., Rizal, S., Mogaji, P.B., Sadiku, E.R., Suprakas, S.R., Farayibi, P.K., Ojijo, V., and Paridah, M.T. (2020). The role of two-step blending in the properties of starch/chitin/polylactic acid biodegradable composites for biomedical applications. Polymers (Basel) 12 (3).
12 12 Wissamitanan, T., Dechwayukul, C., Kalkornsurapranee, E., and Thongruang, W. (2020). Proper blends of biodegradable polycaprolactone and natural rubber for 3D printing. Polymers (Basel) 12 (10): 2416.
13 13 Xu, J., Sagnelli, D., Faisal, M., Perzon, A., Taresco, V., Mais, M., Giosafatto, C.V.L., Hebelstrup, K.H., Ulvskov, P., Jorgensen, B., Chen, L., Howdle, S.M., and Blennow, A. (2021). Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydrate Polymers 253: 117277.
14 14 Zhang, J., Xu, W.R., Zhang, Y.C., Han, X.D., Chen, C., and Chen, A. (2020). In situ generated silica reinforced polyvinyl alcohol/liquefied chitin biodegradable films for food packaging. Carbohydrate Polymers 238: 116182.
15 15 Bui, A.T., Williams, B.A., Hoedt, E.C., Morrison, M., Mikkelsen, D., and Gidley, M.J. (2020). High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles. Food and Function 11 (6): 5635–5646.
16 16 Maevskaia, E.N., Shabunin, A.S., Dresvyanina, E.N., Dobrovol’skaya, I.P., Yudin, V.E., Paneyah, M.B., Fediuk, A.M., Sushchinskii, P.L., Smirnov, G.P., Zinoviev, E.V., and Morganti, P. (2020). Influence of the introduced chitin nanofibrils on biomedical properties of chitosan-based materials. Nanomaterials (Basel) 10 (5): 945.