Applied Biostatistics for the Health Sciences. Richard J. Rossi

Чтение книги онлайн.

Читать онлайн книгу Applied Biostatistics for the Health Sciences - Richard J. Rossi страница 44

Applied Biostatistics for the Health Sciences - Richard J. Rossi

Скачать книгу

style="font-size:15px;">      3 P(−1.21≤Z≤2.28)=Φ(1.81)−Φ(−1.21)=0.9887−0.1131=0.8756

      4 P(0.67≤Z≤6.28)=Φ(6.28)−Φ(0.67)=1−0.7486=0.2514

      5 P(−4.21≤Z≤0.84)=Φ(0.84)−0=0.7995

      The pth percentile of the standard normal can be found by looking up the cumulative probability p100 inside of the standard normal tables given in Appendix A and then working backward to find the value of Z. Unfortunately, in some cases the value of p100 will not be listed inside the table, and in this case, the value closest to p100 inside of the table should be used for finding the approximate value of the pth percentile.

       Example 2.37

      Determine the 90th percentile of a standard normal distribution.

Φ(z)=P(Z≤z)
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
p1510202550
pth percentile−2.33−1.645−1.28−0.84−0.670.00
p758090959999.9
pth percentile0.670.841.281.6452.333.09

      When X is a normal distribution with μ≠0 or σ≠1, the distribution of X is called a non-standard normal distribution. The standard normal distribution is the reference distribution for all normal distributions because all of the probabilities and percentiles for a non-standard normal can be determined from the standard normal distribution. In particular, the following relationships between a non-standard normal with mean µ and standard deviation σ and the standard normal can be used to convert a non-standard normal value to a Z-value and vice versa.

       THE RELATIONSHIPS BETWEEN A STANDARD NORMAL AND A NON-STANDARD NORMAL

      1 If X is a non-standard normal with mean µ and standard deviation σ, then Z=(X−μ)/σ.

      2 If Z is a standard normal, then X=σ⋅Z+μ is a non-standard normal with mean µ and standard deviation σ.

      Figure 2.29 The correspondence between the values of a standard normal and a non-standard normal.

      To determine the cumulative probability for the value of a non-standard normal, say x, convert the value of x to its corresponding z value using z=z−μ/σ; then determine the cumulative probability for this z value. That is,

upper P left-parenthesis upper X less-than-or-equal-to x right-parenthesis equals upper P left-parenthesis upper Z less-than-or-equal-to StartFraction x minus mu Over sigma EndFraction right-parenthesis

       NON-STANDARD NORMAL PROBABILITIES

      If X is a non-standard normal variable with mean µ and standard deviation σ, then

      1 P(X≥x)=1−P(X≤x) =1−P(Z≤x−μσ)

      2 P(a≤X≤b)=P(X≤b)−P(X≤b) =P(Z≤b−μσ)−P(Z≤a−μσ)

      Note that each of the probabilities associated with a non-standard normal distribution is based on the process of converting an x value to a z value using the formula Z=(x−μ)/σ. The reason why the standard normal can be used for computing every probability concerning a non-standard normal is that there is a one-to-one correspondence between the Z and X values (see Figure 2.29).

       Example 2.38

      Figure 2.30 P(700≤X≤1000).

Скачать книгу