Introduction to Differential Geometry with Tensor Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Introduction to Differential Geometry with Tensor Applications - Группа авторов страница 14

Introduction to Differential Geometry with Tensor Applications - Группа авторов

Скачать книгу

we first sum on i from 1 to 3, then on each term of its 3 terms we sum j from 1 to 3. This results in 9 terms. Then, on each of the 9 terms we sum k from 1 to 3, which results in 27 terms. Like the last example, we sum

image

      Solution: Since f = f(x1, x2, … xn),

      from calculus, we have image

      Example 1.8.4. (a) If apqxpxq = 0 for all values of the independent variables x1, x2, … xn and apq‘s are constant, show that aij + aji = 0.

      (b) If apqrxpxqxr = 0 for all values of the independent variables x1, x2, … xn and apqr‘s are constant, show that akij + akji + aikj + ajki + aijk + ajik = 0.

      Solution: Differentiating:

      (1.12a) image

      with respect to xi

image

      (b) Differentiating

image

      with respect to xi

image

      Differentiating with respect to xj, we get

image

      Differentiating in the same way, with respect to xk we get

image

      Solution: We have image, taking determinant image,

image

      Example 1.8.6. If image is a double system such that image, show that either image or image.

      Solution: From above result image

image

      (1.13a) image

      (1.13b) image

image

      The above result can be stated as image. It is the result of the multiplication of two determinants of the third order.

      1 1. Write out in full the following expression.

      2 2. Expand the following using the summation convention.

      3 3. Prove the following.

      4 4. Show that for all values of independentvariables, x1, x2, … .xn, and where xp’s are constants.

      5 5. Calculate

      6 6. Using the relation , show that

      7 7. Express each of the following sums using the summation convention:

      8 8. Evaluate each of the following (range of indices 1 to n):9.

      9 10. If yi are n independent functions of variables xi and zi are n independent functions of yi and if and then show that .

      10 11. If and a−1 times the cofactor of in the determinant of show that

      11 12. Prove that where

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SE6UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQ

Скачать книгу