DNA Origami. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу DNA Origami - Группа авторов страница 22

DNA Origami - Группа авторов

Скачать книгу

cellular functions. DNA nanostructures are also as a container for the molecules, by incorporating a dynamic open/close system to release or expose target molecules. The first example of a dynamic nanostructure with open/close system is a DNA box, whose lid opening is controlled by strand displacement with toehold‐containing DNAs [26]. An octahedral structure with a photoresponsive open/close system was constructed to include and release AuNPs [114].

      1.13.5 Nanorobot Targeting Tumor In Vivo

Schematic illustration of a DNA nanorobot that recognizes cells.

      Source: Douglas et al. [115]/with permission of American Association for the Advancement of Science.

      1 1 Seeman, N.C. (1982). Nucleic‐acid junctions and lattices. Journal of Theoretical Biology 99: 237–247.

      2 2 Seeman, N.C. (2003). DNA in a material world. Nature 421: 427–431.

      3 3 Endo, M. and Sugiyama, H. (2009). Chemical approaches to DNA nanotechnology. Chembiochemistry: A European Journal of Chemical Biology 10: 2420–2443.

      4 4 Rajendran, A., Endo, M., and Sugiyama, H. (2012). Single‐molecule analysis using DNA origami. Angewandte Chemie 51: 874–890.

      5 5 Torring, T., Voigt, N.V., Nangreave, J. et al. (2011). DNA origami: a quantum leap for self‐assembly of complex structures. Chemical Society Reviews 40: 5636–5646.

      6 6 Rothemund, P.W. (2006). Folding DNA to create nanoscale shapes and patterns. Nature 440: 297–302.

      7 7 Fu, T.J. and Seeman, N.C. (1993). DNA double‐crossover molecules. Biochemistry‐US 32: 3211–3220.

      8 8 Yurke, B., Turberfield, A.J., Mills, A.P. Jr. et al. (2000). A DNA‐fuelled molecular machine made of DNA. Nature 406: 605–608.

      9 9 Yan, H., Zhang, X., Shen, Z., and Seeman, N.C. (2002). A robust DNA mechanical device controlled by hybridization topology. Nature 415: 62–65.

      10 10 Winfree, E., Liu, F.R., Wenzler, L.A., and Seeman, N.C. (1998). Design and self‐assembly of two‐dimensional DNA crystals. Nature 394: 539–544.

      11 11 LaBean, T.H., Yan, H., Kopatsch, J. et al. (2000). Construction, analysis, ligation, and self‐assembly of DNA triple crossover complexes. Journal of the American Chemical Society 122: 1848–1860.

      12 12 Ding, B.Q., Sha, R.J., and Seeman, N.C. (2004). Pseudohexagonal 2D DNA crystals from double crossover cohesion. Journal of the American Chemical Society 126: 10230–10231.

      13 13 Liu, D., Wang, M., Deng, Z. et al. (2004). Tensegrity: construction of rigid DNA triangles with flexible four‐arm DNA junctions. Journal of the American Chemical Society 126: 2324–2325.

      14 14 Yan, H., Park, S.H., Finkelstein, G. et al. (2003). DNA‐templated self‐assembly of protein arrays and highly conductive nanowires. Science 301: 1882–1884.

      15 15 Mathieu, F., Liao, S., Kopatsch, J. et al. (2005). Six‐helix bundles designed from DNA. Nano Letters 5: 661–665.

      16 16 Bath, J. and Turberfield, A.J. (2007). DNA nanomachines. Nature Nanotechnology 2: 275–284.

      17 17 Mao, C., Sun, W., Shen, Z., and Seeman, N.C. (1999). A nanomechanical device based on the B‐Z transition of DNA. Nature 397: 144–146.

      18 18 Endo, M., Sugita, T., Katsuda, Y. et al. (2010). Inside cover: programmed‐assembly system using

Скачать книгу