DNA Origami. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу DNA Origami - Группа авторов страница 24
61 61 Suzuki, Y., Endo, M., Katsuda, Y. et al. (2014a). DNA origami based visualization system for studying site‐specific recombination events. Journal of American Chemical Society 136: 211–218.
62 62 Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. (2010). Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. Journal of American Chemical Society 132: 1592–1597.
63 63 Xu, Y., Sato, H., Sannohe, Y. et al. (2008). Stable lariat formation based on a G‐quadruplex scaffold. Journal of American Chemical Society 130: 16470–16471.
64 64 Youngblood, B. and Reich, N.O. (2006). Conformational transitions as determinants of specificity for the DNA methyltransferase EcoRI. The Journal of Biological Chemistry 281: 26821–26831.
65 65 Bruner, S.D., Norman, D.P., and Verdine, G.L. (2000). Structural basis for recognition and repair of the endogenous mutagen 8‐oxoguanine in DNA. Nature 403: 859–866.
66 66 Morikawa, K., Matsumoto, O., Tsujimoto, M. et al. (1992). X‐ray structure of T4 endonuclease V: an excision repair enzyme specific for a pyrimidine dimer. Science 256: 523–526.
67 67 Guo, F., Gopaul, D.N., and Van Duyne, G.D. (1997). Structure of Cre recombinase complexed with DNA in a site‐specific recombination synapse. Nature 389: 40–46.
68 68 Van Duyne, G.D. (2001). A structural view of cre‐loxp site‐specific recombination. Annual Review of Biophysics and Biomolecular Structure 30: 87–104.
69 69 Suzuki, Y., Endo, M., Canas, C. et al. (2014b). Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure. Nucleic Acids Research 42: 7421–7428.
70 70 Kobayashi, Y., Misumi, O., Odahara, M. et al. (2017). Holliday junction resolvases mediate chloroplast nucleoid segregation. Science 356: 631–634.
71 71 Rajendran, A., Endo, M., Hidaka, K., and Sugiyama, H. (2014). Direct and single‐molecule visualization of the solution‐state structures of G‐hairpin and G‐triplex intermediates. Angewandte Chemie International Edition 53: 4107–4112.
72 72 Endo, M., Yang, Y., Suzuki, Y. et al. (2012). Single‐molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. Angewandte Chemie International Edition 51: 10518–10522.
73 73 Yamagata, Y., Emura, T., Hidaka, K. et al. (2016). Triple helix formation in a topologically controlled DNA nanosystem. Chemistry 22: 5494–5498.
74 74 Endo, M., Xing, X., Zhou, X. et al. (2015). Single‐molecule manipulation of the duplex formation and dissociation at the G‐quadruplex/i‐Motif site in the DNA nanostructure. ACS Nano 9: 9922–9929.
75 75 Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. (2010). A versatile DNA nanochip for direct analysis of DNA base‐excision repair. Angewandte Chemie International Edition 49: 9412–9416.
76 76 Lee, A.J., Endo, M., Hobbs, J.K., and Walti, C. (2018). Direct single‐molecule observation of mode and geometry of RecA‐mediated homology search. ACS Nano 12: 272–278.
77 77 Raz, M.H., Hidaka, K., Sturla, S.J. et al. (2016). Torsional constraints of DNA substrates impact Cas9 cleavage. Journal of American Chemical Society 138: 13842–13845.
78 78 Xing, X., Sato, S., Wong, N.K. et al. (2020). Direct observation and analysis of TET‐mediated oxidation processes in a DNA origami nanochip. Nucleic Acids Research 48: 4041–4051.
79 79 Yamamoto, S., De, D., Hidaka, K. et al. (2014). Single molecule visualization and characterization of Sox2‐Pax6 complex formation on a regulatory DNA element using a DNA origami frame. Nano Letters 14: 2286–2292.
80 80 Raghavan, G., Hidaka, K., Sugiyama, H., and Endo, M. (2019). Direct observation and analysis of the dynamics of the photoresponsive transcription factor GAL4. Angewandte Chemie International Edition 58: 7626–7630.
81 81 Mino, T., Iwai, N., Endo, M. et al. (2019). Translation‐dependent unwinding of stem‐loops by UPF1 licenses Regnase‐1 to degrade inflammatory mRNAs. Nucleic Acids Research 47: 8838–8859.
82 82 Steinhauer, C., Jungmann, R., Sobey, T.L. et al. (2009). DNA origami as a nanoscopic ruler for super‐resolution microscopy. Angewandte Chemie International Edition 48: 8870–8873.
83 83 Jungmann, R., Steinhauer, C., Scheible, M. et al. (2010). Single‐molecule kinetics and super‐resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Letters 10: 4756–4761.
84 84 Lin, C., Jungmann, R., Leifer, A.M. et al. (2012). Submicrometre geometrically encoded fluorescent barcodes self‐assembled from DNA. Nature Chemistry 4: 832–839.
85 85 Gu, H., Chao, J., Xiao, S.J., and Seeman, N.C. (2009). Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nature Nanotechnology 4: 245–248.
86 86 Gu, H.Z., Chao, J., Xiao, S.J., and Seeman, N.C. (2010). A proximity‐based programmable DNA nanoscale assembly line. Nature 465: 202–205.
87 87 Lund, K., Manzo, A.J., Dabby, N. et al. (2010). Molecular robots guided by prescriptive landscapes. Nature 465: 206–210.
88 88 Wickham, S.F.J., Endo, M., Katsuda, Y. et al. (2011). Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotechnology 6: 166–169.
89 89 Bath, J., Green, S.J., and Turberfield, A.J. (2005). A free‐running DNA motor powered by a nicking enzyme. Angewandte Chemie International Edition 44: 4358–4361.
90 90 Wickham, S.F., Bath, J., Katsuda, Y. et al. (2012). A DNA‐based molecular motor that can navigate a network of tracks. Nature Nanotechnology 7: 169–173.
91 91 Kuzuya, A., Koshi, N., Kimura, M. et al. (2010). Programmed nanopatterning of organic/inorganic nanoparticles using nanometer‐scale wells embedded in a DNA origami scaffold. Small 6: 2664–2667.
92 92 Endo, M., Yang, Y., Emura, T. et al. (2011). Programmed placement of gold nanoparticles onto a slit‐type DNA origami scaffold. Chemical Communications 47: 10743–10745.
93 93 Maune, H.T., Han, S.P., Barish, R.D. et al. (2010). Self‐assembly of carbon nanotubes into two‐dimensional geometries using DNA origami templates. Nature Nanotechnology 5: 61–66.
94 94 Kuzyk, A., Schreiber, R., Fan, Z. et al. (2012). DNA‐based self‐assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483: 311–314.
95 95 Acuna, G.P., Moller, F.M., Holzmeister, P. et al. (2012). Fluorescence enhancement at docking sites of DNA‐directed self‐assembled nanoantennas. Science 338: 506–510.
96 96 Kershner, R.J., Bozano, L.D., Micheel, C.M. et al. (2009). Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotechnology 4: 557–561.
97 97 Hung, A.M., Micheel, C.M., Bozano, L.D. et al. (2010). Large‐area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotechnology 5: 121–126.
98 98 Castro, C.E., Su, H.J., Marras, A.E. et