Interventional Cardiology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Interventional Cardiology - Группа авторов страница 116

Interventional Cardiology - Группа авторов

Скачать книгу

63(24): 2659–2673.

      103 103 Gutiérrez‐Chico JL, Alegría‐Barrero E, Teijeiro‐Mestre R, et al. Optical coherence tomography: from research to practice. Eur Heart J Cardiovasc Imaging 2012; 13(5): 370–384.

      104 104 Gonzalo N, Serruys PW, Okamura T, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J 2009; 158(2): 284–293.

      105 105 Takano M, Yamamoto M, Inami S, et al. Appearance of lipid‐laden intima and neovascularization after implantation of bare‐metal stents extended late‐phase observation by intracoronary optical coherence tomography. J Am Coll Cardiol 2009; 55(1): 26–32.

      106 106 Kilickesmez K, Dall’Ara G, Rama‐Merchan JC, et al. Optical coherence tomography characteristics of in‐stent restenosis are different between first and second generation drug eluting stents. IJC Heart Vessel 2014; 3: 68–74.

      107 107 Kang S‐J, Mintz GS, Akasaka T, et al. Optical coherence tomographic analysis of in‐stent neoatherosclerosis after drug‐eluting stent implantation. Circulation 2011; 123(25): 2954–2963.

      108 108 Miyazaki S, Hiasa Y, Takahashi T, et al. in vivo optical coherence tomography of very late drug‐eluting stent thrombosis compared with late in‐stent restenosis. Circ J 2012; 76(2): 390–398.

      109 109 Fujino A, Mintz GS, Matsumura M, et al. A new optical coherence tomography‐based calcium scoring system to predict stent underexpansion. EuroIntervention 2018; 13:e2182–9.

      110 110 Serruys PW, Ormiston JA, Onuma Y, et al. A bioabsorbable everolimus‐eluting coronary stent system (ABSORB): Two‐year outcomes and results from multiple imaging methods. The Lancet 2009; 373(9667): 897–910.

      111 111 Serruys PW, Onuma Y, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus‐eluting vascular scaffold for the treatment of de novo coronary artery stenosis: 12‐month clinical and imaging outcomes. J Am Coll Cardiol 2011; 58(15): 1578–1588.

      112 112 Onuma Y, Serruys PW, Perkins LEL, et al. Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus‐eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography. Circulation 2010; 122(22): 2288–2300.

      113 113 Montone RA, Niccoli G, De Marco F, et al. Temporal Trends in Adverse Events After Everolimus‐Eluting Bioresorbable Vascular Sca_old Versus Everolimus‐Eluting Metallic Stent Implantation: A Meta‐Analysis of Randomized Controlled Trials. Circulation 2017, 135: 2145–2154.

      114 114 Zhang XL, Zhu QQ, Kang LN, et al. Mid‐ and Long‐Term Outcome Comparisons of Everolimus‐Eluting Bioresorbable Sca_olds Versus Everolimus‐Eluting Metallic Stents: A Systematic Review and Meta‐analysis. Ann. Intern. Med. 2017, 167: 642–654.

      115 115 Arroyo D, Gendre G, Schukraft S, et al. Comparison of everolimus‐ and biolimus‐eluting coronary stents with everolimus‐eluting bioresorbable vascular sca_olds: Two‐year clinical outcomes of the EVERBIO II trial. Int. J. Cardiol. 2017, 243: 121–125.

      116 116 Katagiri Y, Onuma Y. Three‐year follow‐up of the randomised comparison between an everolimus‐eluting bioresorbable sca_old and a durable polymer everolimus‐eluting metallic stent in patients with ST‐segment elevation myocardial infarction (TROFI II trial). EuroIntervention 2018, 14: e1224–e1226.

      117 117 Kimura T, Kozuma K, Tanabe K, et al. A randomized trial evaluating everolimus‐eluting Absorb bioresorbable sca_olds vs everolimus‐eluting metallic stents in patients with coronary artery disease: ABSORB Japan. Eur. Heart J. 2015, 36: 3332–3342.

      118 118 Xu B, Yang Y, Han Y, et al. Comparison of everolimus‐eluting bioresorbable vascular scaffolds and metallic stents: Three‐year clinical outcomes from the ABSORB China randomised trial. EuroIntervention 2018, 14: e554–e561.

      119 119 Arroyo D, Gendre, G, Schukraft, S, et al. Comparison of everolimus‐ and biolimus‐eluting coronary stents with everolimus‐eluting bioresorbable vascular sca_olds: Two‐year clinical outcomes of the EVERBIO II trial. Int. J. Cardiol. 2017, 243, 121–125.

      120 120 Mattesini A, Secco GG, Dall’Ara G, et al. ABSORB biodegradable stents versus second‐generation metal stents: A comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc. Interv. 2014, 7, 741–750.

      121 121 Dempsey RJ, Davis DG, Buice RG, Lodder RA. Biological and medical applications of near‐infrared spectrometry. Appl Spectrosc OSA 1996; 50(2): 18A–34A.

      122 122 Gardner CM, Tan H, Hull EL, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter‐based near‐infrared spectroscopy system. JACC Cardiovasc Imaging 2008; 1(5): 638–648.

      123 123 Waxman S, Dixon SR, L’Allier P, et al. in vivo validation of a catheter‐based near‐infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc Imaging 2009; 2(7): 858–868.

      124 124 Davies MJ, Richardson PD, Woolf N, et al. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993; 69(5): 377–381.

      125 125 Madder RD, Smith JL, Dixon SR, Goldstein JA. Composition of target lesions by near‐infrared spectroscopy in patients with acute coronary syndrome versus stable angina. Circ Cardiovasc Interv 2012; 5(1): 55–61.

      126 126 Madder RD, Goldstein JA, Madden SP, et al. Detection by near‐infrared spectroscopy of large lipid core plaques at culprit sites in patients with acute ST‐segment elevation myocardial infarction. JACC Cardiovasc Interv 2013; 6(8): 838–846.

      127 127 Oemrawsingh RM, Cheng JM, García‐García HM, et al. Near‐infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J Am Coll Cardiol 2014; 64(23): 2510–2518.

      128 128 Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near‐infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study. Lancet 2019; 394:1629–1637.

      129 129 Goldstein JA, Maini B, Dixon SR, et al. Detection of lipid‐core plaques by intracoronary near‐infrared spectroscopy identifies high risk of periprocedural myocardial infarction. Circ Cardiovasc Interv 2011; 4(5): 429–437.

      130 130 Raghunathan D, Abdel‐Karim A‐RR, Papayannis AC, et al. Relation between the presence and extent of coronary lipid core plaques detected by near‐infrared spectroscopy with postpercutaneous coronary intervention myocardial infarction. Am J Cardiol 2011; 107(11): 1613–1618.

      131 131 Stone G. TCT Congress 2014. Washington DC, USA. CANARY: Evaluation of the relationship between intravascular ultrasound and near infrared spectroscopy lipid parameters with periprocedural myonecrosis, with an integrated randomized trial of distal protection to prevent PCI‐related myocardial infarction. Washington DC; 2014.

      132 132 Brilakis ES, Abdel‐Karim A‐RR, Papayannis AC, et al. Embolic protection device utilization during stenting of native coronary artery lesions with large lipid core plaques as detected by near‐infrared spectroscopy. Catheter Cardiovasc Interv 2012; 80(7): 1157–1162.

      133 133 Dixon SR, Grines CL, Munir A, et al. Analysis of target lesion length before coronary artery stenting using angiography and near‐infrared spectroscopy versus angiography alone. Am J Cardiol 2012; 109(1): 60–66.

      134 134 Kini AS, Baber

Скачать книгу