Industry 4.0 Vision for the Supply of Energy and Materials. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Industry 4.0 Vision for the Supply of Energy and Materials - Группа авторов страница 27

Industry 4.0 Vision for the Supply of Energy and Materials - Группа авторов

Скачать книгу

– Wireless Communication Network and Communication Profiles – WirelessHART™. Standard IEC 62591, International Electrotechnical Commission (IEC). https://webstore.iec.ch/publication/24433.

      64 64 IEC. (Oct 2014). Industrial networks – Wireless communication network and communication profiles – ISA 100.11a. Standard IEC 62734, International Electrotechnical Commission (IEC). https://webstore.iec.ch/publication/7409.

      65 65 Dujovne, D., Watteyne, T., Vilajosana, X., and Thubert, P. (2014). 6TiSCH: deterministic IP-enabled industrial Internet (of things). IEEE Commun. Mag. 52 (12): 36–41.

      66 66 Vilajosana, X., Pister, K., and Watteyne, T. (May 2017). RFC 8180 – Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration. Internet Engineering Task Force (IETF). https://datatracker.ietf.org/doc/pdf/rfc8180.pdf.

      67 67 Bartolomeu, P., Alam, M., Ferreira, J., and Fonseca, J.A. (2018). Supporting deterministic wireless communications in industrial IoT. IEEE Trans. Industr. Inform. 14 (9): 4045–4054.

      68 68 Siekkinen, M., Hiienkari, M., Nurminen, J.K., and Nieminen, J. (2012). How Low Energy Is Bluetooth Low Energy? Comparative Measurements with ZigBee/802.15.4. In: 2012 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 232–237.

      69 69 IEEE. (2007). Approved IEEE Draft Amendment to IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Part 15.4: wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANS): amendment to Add Alternate Phy (Amendment of IEEE Std 802.15.4). IEEE Approved Std P802.15.4a/D7, January.

      70 70 Lo Bello, L. and Toscano, E. (2009). Coexistence issues of multiple co-located IEEE 802.15.4/ZigBee networks running on adjacent radio channels in industrial environments. IEEE Trans. Industr. Inform. 5 (2): 157–167.

      71 71 Lennvall, T., Svensson, S., and Hekland, F. (2008). A Comparison of WirelessHART and ZigBee for Industrial Applications. In: 2008 IEEE International Workshop on Factory Communication Systems, 85–88.

      72 72 Zigbee Alliance, Zigbee PRO with Green Power. https://zigbeealliance.org/wp-content/uploads/2019/11/docs-09-5499-26-batt-zigbee-green-power-specification.pdf.

      73 73 Radmand, P., Domingo, M., Singh, J., Arnedo, J, Talevski, A., Petersen, S., and Carlsen, S. (2010). ZigBee/ZigBee PRO Security Assessment Based on Compromised Cryptographic Keys. 2010 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 465–470.

      74 74 Souza, G.B.D.C., Vieira, F.H.T., Lima, C.R., Deus, G.A.D.J., De Castro, M.S., De Araujo, S.G., and Vasques, T.L. (2016). Developing smart grids based on GPRS and ZigBee technologies using queueing modeling-based optimization algorithm. ETRI J. 38 (1): 41–51.

      75 75 Hassan, S.M., Ibrahim, R., Bingi, K., Chung, T.D., and Saad, N. (2017). Application of wireless technology for control: A wirelesshart perspective. Procedia Comput. Sci. 105: 240–247.

      76 76 Raza, S., Faheem, M., and Guenes, M. (2019). Industrial wireless sensor and actuator networks in industry 4.0: Exploring requirements, protocols, and challenges—A MAC survey. Int. J. Commun. Syst. 32 (15): e4074.

      77 77 Nixon, M. and Round Rock, T. (Sep 2012). A Comparison of WirelessHART and ISA100. 11a. Emerson Process Management. https://www.emerson.com/documents/automation/white-paper-a-comparison-of-wirelesshart-isa100-11a-en-42598.pdf.

      78 78 Liang, W., Zhang, X., Xiao, Y., Wang, F., Zeng, P., and Haibin, Y. (2011). Survey and Experiments of WIA-PA Specification of industrial wireless network. Wirel. Commun. Mob. Comput. 11 (8): 1197–1212.

      79 79 IEEE 802.15 WPAN Task Group 1 (TG1). https://www.ieee802.org/15/pub/TG1.html.

      80 80 Bruno, R., Conti, M., and Gregori, E. (2002). Bluetooth: Architecture, protocols and scheduling algorithms. Cluster Comput. 5 (2): 117–131.

      81 81 Patti, G., Leonardi, L., and Lo Bello, L. (2016). A Bluetooth Low Energy RealTime Protocol for Industrial Wireless Mesh Networks. In: IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, 4627–4632.

      82 82 Gomez, C., Oller, J., and Paradells, J. (Aug 2012). Overview and evaluation of Bluetooth low energy: An emerging low-power wireless technology. Sensors 12 (9): 11734–11753.

      83 83 Baert, M., Rossey, J., Shahid, A., and Hoebeke, J. (Jul 2018). The Bluetooth mesh standard: An overview and experimental evaluation. Sensors 18 (8): 2409.

      84 84 IEEE 802.11 Wireless Local Area Networks. https://www.ieee802.org/11.

      85 85 Banos-Gonzalez, V., Afaqui, M., Lopez-Aguilera, E., and Garcia-Villegas, E. (Nov 2016). IEEE 802.11ah: A technology to face the IoT challenge. Sensors 16 (11): 1960.

      86 86 Hazmi, A., Rinne, J., and Valkama, M. (2012). Feasibility Study of IEEE 802.11 ah Radio Technology for IoT and M2M Use Cases. In: 2012 IEEE Globecom Workshops, 1687–1692.

      87 87 Siemens. (Oct 2020). Boost in Efficiency with WiFi6 – New WLAN Standard Makes It Easier to Handle Large

Скачать книгу