The Science of Reading. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу The Science of Reading - Группа авторов страница 50

The Science of Reading - Группа авторов

Скачать книгу

can be seen in pseudoword naming latencies. Phonemes activated in the response buffer also activate word nodes in the phonological lexicon in a way similar to the activation of word nodes in the orthographic lexicon by orthographic letter identities. This is particularly interesting for regular words because the activation from the phonological lexicon is in line with the activation from the visual input.

      The DRC model simulates many effects observed in word naming (Coltheart et al., 2001; but see Seidenberg et al., this volume, for a critique). However, there are three issues with the assembled phonology route. First, there is an element of arbitrariness in the grapheme‐phoneme conversion rules used, as indicated by Glushko (1979). Second, the model cannot account for the finding that graphemes with ambiguous pronunciations activate more than one phoneme. So, the model cannot explain why it takes longer to name the regular word wave than wade (Glushko, 1979), or why the word bead can be misread as bed (Lesch & Pollatsek, 1993). The DRC model cannot explain either why bilinguals activate phonology in both their languages when reading words in one language.

       The CDP+ model

      To address the shortcomings of DRC, Perry et al. (2007) developed an alternative model: CDP+ (the Connectionist Dual Process model). The CDP+ model built on the DRC model and included the same route(s) for addressed phonology. As a result, the new model accounted for all effects previously simulated by the addressed route in the DRC model (e.g., the word frequency effect).

      This neural network solves the problems with the assembled phonology route in the DRC model. First, there is no need to define default conversions (set of rules). Instead, the network learns to activate the best fitting output on the basis of the input units activated. It does so by changing the weights of the connections between the units. When there is a consistent correspondence between input patterns and output patterns, the model rapidly catches the correspondence and returns the correct output when given the input. Thus, the neural network rapidly learns to activate the output pronunciation /‐id/ for input words ending in –eed, as all monosyllabic words ending in these letters have the same pronunciation.

Schematic illustration of the CDP+ model of visual word naming.

      (Perry et al., 2007/With permission of American Psychological Association).

      The route for addressed phonology is the same as in DRC, but a neural network replaces the rule system in the assembled route.

      The CDP+ model has two more advantages over the DRC model. First, it more naturally accounts for the fact that not all people name pseudowords the same (Pritchard et al., 2012). Indeed, not everyone pronounces the pseudowords nead as /nid/, which they should if they follow strict grapheme‐phoneme correspondence rules as in the DRC. Some people pronounce nead as /nεd/, or give different pronunciations on different occasions. Such differences can be understood as individual differences in the learning of the neural network, or in the activation dynamics of the network. Second, the CDP+ model has more scope for interactions between the graphemes and phonemes in a word. Because the conversion occurs in parallel across the entire word, the model may learn that the pronunciation of the vowel in subtle ways depends on the consonants before and/or after the vowel. So, the model may end up naming the pseudoword glive as rhyming with give and the pseudoword brive as rhyming with drive because of the larger overlap between glive and give and brive and drive. Or the model may pronounce glive as rhyming with drive if it has shortly before been presented with the word drive. Similar dynamics are seen in people (Pritchard et al., 2012).

       Triangle model

      Both the DRC and CDP+ models stay close to verbal descriptions of the processes involved in word reading from which they were derived. For instance, they assume the existence of orthographic and phonological word nodes, representing written and spoken words, respectively. Activation flows between meaningful units, which become more or less likely to be selected for conscious output.

Schematic illustration of the Triangle model 
						<noindex><p style= Скачать книгу