Plastics and the Ocean. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Plastics and the Ocean - Группа авторов страница 14

Plastics and the Ocean - Группа авторов

Скачать книгу

that came to be known as nurdles, the form that thermoplastic resin raw material is shipped to “converters,” as the fabrica‐ tors of plastic objects for the marketplace are known. These pellets showed up in the bellies of seabirds and in small mesh nets towed mostly at the ocean surface. In the decade following Carpenter’s paper, larger objects came to be noticed and spawned the National Atmospheric and Oceanographic Administration (NOAA) international marine debris conferences. The early conferences focused primarily on derelict fishing gear as indisputable harm was being done to ships by blockage of intake ports and entanglement around propellers and drive shafts. To try to stop derelict nets and lines from being caught in propellers, several companies developed knives that could be attached to driveshafts to cut these lines as they wound around them. This fouling with debris had been a rare problem for vessels before the age of plastic, but as the age progressed, and less expensive and more persistent plastic fishing nets and lines proliferated, entanglement increased, and with its high cost to remedy, interest in tracking concentrations of this material became a new focus. Increasing reports appeared on derelict nets and fishing gear killing thousands of marine mammals through entanglement. This led to an interest in observing and recording the occurrence of floating marine debris. In 1987, two NOAA scientists at the National Marine Fisheries Service Auke Bay Laboratory, Steve Ignell and James Seger, prepared a paper on methods for observing debris using line transects of vessels in transit. It was apparent to the authors that sunlight reflected by wavelets or “glare” would be “the most important single environmental factor affecting the sighting probability…” The paper was never submitted, probably because “Extensive analyses of sighting probabilities relating distance, wave height, and light conditions to type, sizes, and colors of marine debris will be needed to incorporate these data into debris estimation procedures.” (Manuscript provided by Steve Ignell). The year before, Ignell had written another paper with Day and Clausen that emanated from the Auke Bay, AK laboratory entitled: “Distribution and Density of Plastic Particulates in the North Pacific Ocean in 1986.” This paper preceded a more comprehensive study by Day, Shaw, and Ignell in 1990, “The quantitative distribution and characteristics of neuston plastic in the North Pacific Ocean, 1985–1989,” published in the proceedings of the Second International Conference on Marine Debris in 1989. Plastic particulates were becoming more interesting, but the term “microplastics” was not yet used.

      Surface drift up to this time had been in large part focused on the transport of fish eggs and larvae, especially those of commercially important species like salmon. James Ingraham Jr. had developed the Ocean Surface Current Simulator (OSCURS) for this purpose while working for NOAA in the Pacific Northwest. Collaborating with oceanographer Curtis Ebbesmeyer, he was able to adapt this simulator to track a container spill of Nike sneakers and predict where they would wash ashore on the West Coast. He expanded on this work to focus on North Pacific accumulation zones and presented his findings in the year 2000 at the 4th International Marine Debris Conference in Honolulu. The results showed two major areas of drifter accumulation: (i) off southern Japan, which has come to be known as the Western Garbage Patch and (ii) the middle of the eastern North Pacific which has come to be known as the Great Pacific Garbage Patch. The work by Day and colleagues never focused on the east‐central North Pacific. When I crossed the area in 1997, I was impressed by the abundance of floating plastics. Two years later, I returned and sampled the area, finding three times the abundance and seven times the weight of the highest concentrations per km2 found by Day a decade earlier in the western Pacific. In order to assess the potential for ingestion of plastics by open ocean filter feeders, we compared the abundance and mass of the zooplankton caught to that of the plastic in our manta trawls. We found the number of zooplankton was five times greater than the number of plastic pieces >0.3mm in diameter, but the weight of the plastic was six times greater than the zooplankton. We published our findings in Marine Pollution Bulletin (42,12, 2001). This finding was shocking and controversial, but to have more plastic than life anywhere in the ocean, no matter how you look at it, was explosive. Another important paper linking floating plastics to absorption of persistent organic pollutants was published the same year by Mato and Takada et al., “Plastic resin pellets as a transport medium for toxic chemicals in the marine environment.” They found the pellets could sorb hydrophobic pollutants up to one million times their level in the surrounding seawater. This gave credence to the description of small ocean plastics as “poison pills” for marine creatures.

      So, if you are the plastic industry, and you can’t show that vagrant plastic waste will go “away,” you might find it advantageous to blame consumers of plastic products for their failure to properly dispose of plastic waste. An extremely effective campaign was mounted by an industry‐ sponsored organization in the US called “Keep America Beautiful.” Its focus was the “litterbug,” who did not properly dispose of their used products. If only people would not litter, the problem of plastics in the ocean would go away. Even scientists studying the problem of ocean plastics believed this theory. After listing potential (though not actual) solutions in their paper: “Global research priorities to mitigate plastic pollution impacts on marine wildlife,” Vegter and 26 co‐authors con cluded that, if their potential solutions were implemented “…it would be feasible to deal with what is ultimately an entirely avoidable problem.” It seems at just this point; the scientists stop being objective, and revert to fantasy. There is no avoiding the problem of ocean plastic pollution in any sense, nor is there any way for it to reach some sort of equilibrium or begin to diminish in any realistic near‐term scenario. Plastic use will surge with the conversion of oil for fuel to oil for plastic. 3‐D printing of everything imaginable with plastic feedstocks along with plastic packaging for nearly every manufactured product and many fruits and vegetables will contribute to the projected doubling or tripling of plastic production by mid‐century. Therefore, it is very important to have a broad view of the resulting issues that you will get from studying the subjects covered in this volume. Plastic pollution and its effects will continue to plague the ocean for many future generations of scientists.

Скачать книгу