Essential Concepts in MRI. Yang Xia

Чтение книги онлайн.

Читать онлайн книгу Essential Concepts in MRI - Yang Xia страница 24

Автор:
Жанр:
Серия:
Издательство:
Essential Concepts in MRI - Yang Xia

Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_09ea7d7f-3809-5417-8935-2ef6859533f6.png" alt="ModifyingAbove less-than psi Math bar pipe bar symblom upper I Subscript z Baseline Math bar pipe bar symblom psi greater-than With bar equals sigma-summation Subscript psi Baseline p Subscript psi Baseline less-than psi Math bar pipe bar symblom upper I Subscript z Baseline Math bar pipe bar symblom psi greater-than comma"/> (3.12)

      where the bar refers to the statistical ensemble average, and the pair of arrow brackets, < >, represents the quantum mechanical expectation value.

      Now consider spin-1/2 particles. In NMR, the dominant interaction of a spin with its environment is always via the Zeeman interaction [as in Eq. (3.5)]. This means that the natural eigenstates are those whose quantum numbers are eigenvalues of Iz, that is, |1/2> and |–1/2>.

      In general, we can express any state in this basis using the Pauli’s spin matrices formalism (cf. Appendix A2.5), as

      Math bar pipe bar symblom psi greater-than equals a Subscript 1 slash 2 Baseline Math bar pipe bar symblom 1 slash 2 greater-than plus a Subscript negative 1 slash 2 Baseline Math bar pipe bar symblom negative 1 slash 2 greater-than equals a Subscript 1 slash 2 Baseline StartBinomialOrMatrix 1 Choose 0 EndBinomialOrMatrix plus a Subscript negative 1 slash 2 Baseline StartBinomialOrMatrix 0 Choose 1 EndBinomialOrMatrix period (3.13)

      Since Iz=12[100−1], the ensemble averaged expectation value of Iz is determined by the difference in populations between the upper and lower energy levels, according to the Boltzmann distribution. This distribution describes the polarization of the ensemble in thermal equilibrium.

      We can calculate the normalized population at thermal equilibrium as

      where the numerators are individual populations and the denominator is the total population.

      Note that kBT is the Boltzmann energy and ħγB0 is the Zeeman energy difference. For example, for protons in a magnetic field of strength B0 = 7 Tesla and at room temperature (T = 300 K), we have

k Subscript upper B Baseline upper T equals 1.38 times 10 Superscript negative 23 Baseline times 300 equals 4.41 times 10 Superscript negative 21 Baseline upper J and italic h over two pi gamma upper B 0 equals StartFraction 6.626 times 10 Superscript negative 34 Baseline Over 2 pi EndFraction times 2.675 times 10 Superscript 8 Baseline times 7 equals 1.97 times 10 Superscript negative 25 Baseline upper J period

      Since kBT is over four orders of magnitude bigger than ħγB0, the ratio ħγB0/kBT is tiny. This is a good news and bad news situation: the good news is that the exponentials in Eq. (3.14) can be simplified using the Taylor expansion since the high-order terms would be very small, while the bad news means that our signal will be very small, since the signal is proportional to the population difference.

      Due to this tiny ratio between the Zeeman energy and the Boltzmann energy, we can apply the Taylor expansion (Appendix A1.1.4) to simplify the expression in Eq. (3.14) by keeping only the first two terms, as

      ModifyingAbove Math bar pipe bar symblom a Subscript plus-or-minus 1 slash 2 Baseline Math bar pipe bar symblom squared With bar equals one-half left-parenthesis 1 plus-or-minus StartFraction italic h over two pi gamma upper B 0 Over 2 k Subscript upper B Baseline upper T EndFraction right-parenthesis period (3.15)

      This equation at the room temperature and a 7 Tesla B0 equals approximately 0.5 ± 1.12 × 10-5, which is almost a half and half situation between the two populations. This approximation is known as the “high-temperature approximation” in the NMR literature, except the “high temperature” in this estimation actually means the room temperature.

      3.4 MEASUREMENT OF THE X COMPONENT OF ANGULAR MOMENTUM

      In Appendix A2.6, we introduce the concept of density matrix operator ρ, which relates the expectation value of any operator A to the trace of the matrix product Aρ, via Eq. (A2.33). Since Ix=12[0110] in the formalism of Pauli’s spin matrices (cf. Appendix A2.5), we have, from Eq. (3.12),

      StartLayout 1st Row ModifyingAbove less-than psi StartAbsoluteValue upper I Subscript x Baseline EndAbsoluteValue psi greater-than With bar equals sigma-summation Subscript psi Baseline p Subscript psi Baseline less-than psi StartAbsoluteValue upper I Subscript x Baseline EndAbsoluteValue psi greater-than 2nd Row equals upper T r left-parenthesis upper I Subscript x Baseline rho right-parenthesis 3rd Row equals one-half left-parenthesis ModifyingAbove a Subscript 1 slash 2 Baseline zero width space asterisk a Subscript negative 1 slash 2 Baseline With bar plus ModifyingAbove a Subscript 1 slash 2 Baseline a Subscript negative 1 slash 2 Baseline zero width space asterisk With bar right-parenthesis comma EndLayout (3.16)

      3.5 MACROSCOPIC MAGNETIZATION FOR SPIN 1/2

      In the current context, the observable quantity is just the (macroscopic) magnetization M, given by

      upper M equals ModifyingAbove less-than upper N gamma italic h over two pi upper I greater-than With bar (3.17a)

      or upper M equals upper N gamma italic h over two pi left-parenthesis ModifyingAbove less-than upper I Subscript x Baseline greater-than With bar i plus ModifyingAbove less-than upper I Subscript y Baseline greater-than With bar j plus ModifyingAbove less-than upper I Subscript z Baseline greater-than With bar k right-parenthesis comma (3.17b)

      where N is the number of spins, and i, j, and k are the unit vectors in the

Скачать книгу