Essential Concepts in MRI. Yang Xia

Чтение книги онлайн.

Читать онлайн книгу Essential Concepts in MRI - Yang Xia страница 20

Автор:
Жанр:
Серия:
Издательство:
Essential Concepts in MRI - Yang Xia

Скачать книгу

in a chemical is brought into the resonance individually and sequentially, the use of an rf pulse excites simultaneously all NMR-active nuclei in the chemical. This method of NMR experiments is called FT NMR, which is much more efficient than CW NMR and offers the opportunity of SNR improvement by co-addition of many spectral responses.

      In an FT NMR experiment, a resonant rf pulse results in a non-zero transverse component of the magnetization M, which precesses in the transverse plane. This precessional motion of M can be detected by means of a receiver coil (often called an rf coil, cf. Chapte 5.2), which can sense the transverse electromotive force (emf) and produces an FID signal.

      upper M Subscript x Baseline left-parenthesis 0 right-parenthesis equals upper M Subscript z Baseline left-parenthesis 0 right-parenthesis equals 0 (2.28a)

      and upper M Subscript y Baseline left-parenthesis 0 right-parenthesis equals upper M 0 period (2.28b)

      Subsequently, assuming a uniform field B0, the evolution of magnetization can be obtained by solving the Bloch equation, as

      Since there is a 90˚ phase difference between Mx(t) and My(t), we can combine the two transverse components (the FID) expressed in Eqs. (2.29a) and (2.29b) into a complex term, as

      Figure 2.14 (a) and (b) The time-domain NMR signal in the transverse plane (the FID) is complex and contains real and imaginary components. By the way of Fourier transform, the time-domain NMR signal can be represented by the equivalent signals in the frequency domain, as the absorption and dispersion components, shown in (c) and (d). The peak shift f0 in the frequency domain corresponds to the oscillation of the FID in the time domain. The recovery of the longitudinal magnetization is shown in (e). As noted in Figure 2.10, since T2 is commonly much shorter than T1, the transverse magnetization in (a) and (b) should decay to zero long before the longitudinal magnetization (e) returns to its thermal equilibrium [i.e., the time scales in (a) and (b) are comparable but are different from the time scale in (e)].

      The time evolution of the Mz(t) component expressed by Eq. (2.29c) is illustrated in Figure 2.14e. Note that since T1 > T2 in most liquid-containing specimens, it takes much longer for Mz(t) to return to its thermal equilibrium than for My(t) and Mx(t) to decay to zero; that is, the time axes in the schematics in Figure 2.14 between (a) and (b) are scaled but between (a) and (e) or (b) and (e) are not scaled.

      When a 90˚|y’ pulse is used in the excitation, the solutions of the Bloch equation take the form

      M subscript x left parenthesis t right parenthesis equals M subscript 0 exp left parenthesis negative t divided by T subscript italic 2 right parenthesis cos left parenthesis omega subscript 0 t right parenthesis (2.31a)

      M subscript y left parenthesis t right parenthesis equals M subscript 0 exp left parenthesis negative t divided by T subscript italic 2 right parenthesis s i n left parenthesis omega subscript 0 t right parenthesis (2.31b)

      text and end text M subscript z left parenthesis t right parenthesis equals M subscript 0 left parenthesis 1 minus exp left parenthesis negative t italic divided by T subscript italic 1 right parenthesis right parenthesis comma (2.31c)

      which only switches the oscillation terms between Mx(t) and My(t), or in other words the phase of the signal.

      2.12 SIGNAL DETECTION IN NMR

      The frequency ω0 in Eq. (2.29) is usually too high for the voltage signal to be observed directly after amplification (a good linear amplifier at radio frequency is also more expensive). An electronic process named heterodyning is commonly used for signal detection in NMR. This process employs a number of phase-sensitive detectors to reduce the carrier frequency but retain the individual amplitude and phase information. This approach is identical to how we listen to a radio program – we do not really listen to our favorite broadcast program at hundreds of megahertz frequency (radio frequency); we listen to the audio frequency modulation of the radio broadcasting.

      When Δω is used as the offset of the heterodyning signal, the NMR signal in the time domain, previously expressed in Eq. (2.30) in ω0, becomes

      S left parenthesis t right parenthesis equals S subscript 0 exp left parenthesis i ϕ right parenthesis exp left parenthesis i increment omega t 
						<noindex><p style= Скачать книгу