Essential Concepts in MRI. Yang Xia

Чтение книги онлайн.

Читать онлайн книгу Essential Concepts in MRI - Yang Xia страница 17

Автор:
Жанр:
Серия:
Издательство:
Essential Concepts in MRI - Yang Xia

Скачать книгу

the individual spins in the transverse plane. This decay in phase coherence describes the process in which the spins come to a thermal equilibrium among themselves in the transverse plane, which results in signal loss since NMR and MRI measure the net transverse magnetization. T2 in biological tissues is usually in the range of tens or hundreds of milliseconds.

      The solution to Eq. (2.15b) becomes

      upper M Subscript up-tack Baseline left-parenthesis t right-parenthesis equals upper M Subscript up-tack Baseline left-parenthesis 0 right-parenthesis e Superscript minus StartFraction t Over upper T Baseline 2 EndFraction Baseline period (2.17)

      Figure 2.10 The motion of the magnitude of the transverse magnetization after a 90˚ B1 field/pulse, where a slow decay leads to a long T2 value. Note that if Figure 2.9 and Figure 2.10 are plotted together on one graph (i.e., share the same scale in the horizontal axis t), the transverse magnetization would decay to zero much faster than the return of the longitudinal magnetization to its thermal equilibrium (i.e., the maximum), since T2 is commonly much shorter than T1.

      2.7 BLOCH EQUATION

      StartFraction d upper M Over d t EndFraction equals gamma left-parenthesis upper M times upper B right-parenthesis plus left-parenthesis minus StartFraction upper M Subscript x Baseline i plus upper M Subscript y Baseline j Over upper T 2 EndFraction minus StartFraction left-parenthesis upper M Subscript z Baseline minus upper M 0 right-parenthesis k Over upper T 1 EndFraction right-parenthesis period (2.18)

      Now we are ready to solve the Bloch equation under various conditions. First rewrite the vector equation into the component form, as

      StartFraction d upper M x Over d t EndFraction equals gamma left-parenthesis upper M Subscript y Baseline upper B 0 plus upper M Subscript z Baseline upper B 1 s i n left-parenthesis omega t right-parenthesis right-parenthesis en-dash upper M Subscript x Baseline slash upper T 2 (2.19a)

      StartFraction d upper M x Over d t EndFraction equals gamma left-parenthesis upper M Subscript z Baseline upper B 1 c o s left-parenthesis omega t right-parenthesis minus upper M Subscript x Baseline upper B 0 right-parenthesis en-dash upper M Subscript y Baseline slash upper T 2 (2.19b)

      StartFraction d upper M z Over d t EndFraction equals gamma left-parenthesis en-dash upper M Subscript x Baseline upper B 1 s i n left-parenthesis w t right-parenthesis en-dash upper M Subscript y Baseline upper B 1 c o s left-parenthesis w t right-parenthesis right-parenthesis en-dash left-parenthesis upper M Subscript z Baseline en-dash upper M 0 right-parenthesis slash upper T 1 period (2.19c)

      The above equations have the usual setup for the magnetic fields as

      upper B 0 equals upper B 0 bold k (2.20a)

      upper B 1 left-parenthesis t right-parenthesis equals upper B 1 c o s left-parenthesis omega t right-parenthesis bold i minus upper B 1 s i n left-parenthesis omega t right-parenthesis bold j period (2.20b)

      Thermal equilibrium ensures the initial condition of M in Eq. (2.19) as

      upper M left-parenthesis t equals 0 right-parenthesis equals upper M 0 bold k period (2.21)

      Note that as soon as M is tipped away from its thermal equilibrium state, relaxation processes start. In most analyses, however, we consider only one event at a time – that is, when we use the B1 field to tip the magnetization, we do not consider the relaxation of the magnetization during the tipping process.

      In order to better examine the solution of the Bloch equation (more precisely, to examine the spectral shapes of the waveform solutions), we will describe the magnetization in a rotating frame with an angular velocity ω about the z axis. In this xyz′ frame, we have the component u in the direction of x′ and v in the direction of y′. We can use the common rotation matrix in linear algebra to rewrite the transform matrix as

      v equals minus upper M Subscript x Baseline s i n left-parenthesis omega t right-parenthesis plus upper M y Subscript y Baseline c o s left-parenthesis omega t right-parenthesis period (2.22b)

      Note that Eq. (A1.23) is used in this clockwise rotation, which is consistent with the convention specified in Figure 1.3. (For a counterclockwise rotation, keep both terms

Скачать книгу