Poly(lactic acid). Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Poly(lactic acid) - Группа авторов страница 74
61 61. M. H. Rahaman, H. Tsuji, Isothermal crystallization and spherulite growth behavior of stereo multiblock poly(lactic acid)s: effects of block length, J. Appl. Polym. Sci. 2013, 129(5), 2502–2517.
62 62. K. Fukushima, Y. Furuhashi, K. Sogo, S. Miura, Y. Kimura, Stereoblock poly(lactic acid): synthesis via solid‐state polycondensation of a stereocomplexed mixture of poly(l‐lactic acid) and poly(d‐lactic acid), Macromol. Biosci. 2005, 5(1), 21–29.
63 63. K. Fukushima, M. Hirata, Y. Kimura, Synthesis and characterization of stereoblock poly(lactic acid)s with nonequivalent d/l sequence ratios, Macromolecules 2007, 40(9), 3049–3055.
64 64. K. Fukushima, Y. Kimura, An efficient solid‐state polycondensation method for synthesizing stereocomplexed poly(lactic acid)s with high molecular weight, J. Polym. Sci. Part A Polym. Chem. 2008, 46(11), 3714–3722.
65 65. T. Kanno, H. T. Oyama, S. Usugi, Effects of molecular weight and catalyst on stereoblock formation via solid state polycondensation of poly(lactic acid), Eur. Polym. J. 2014, 54, 62–70.
66 66. P. Purnama, Y. Jung, S. H. Kim, Stereocomplexation of poly(l‐lactide) and random copolymer poly(d‐lactide‐co‐ε‐caprolactone) to enhance melt stability, Macromolecules 2012, 45(9), 4012–4014.
67 67. M. Jikei, Y. Yamadoi, T. Suga, K. Matsumoto, Stereocomplex formation of poly(l‐lactide)‐poly(ε‐caprolactone) multiblock copolymers with poly(d‐lactide), Polymer 2017, 123, 73–80.
68 68. H. Tsuji, M. Yamasaki, Y. Arakawa, Stereocomplex formation between enantiomeric alternating lactic acid‐based copolymers as a versatile method for the preparation of high performance biobased biodegradable materials, ACS Appl. Polym. Mater. 2019, 1(6), 1476–1484.
69 69. H. Tsuji, S. Sato, N. Masaki, Y. Arakawa, A. Kuzuya, Y. Ohya, Synthesis, stereocomplex crystallization and homo‐crystallization of enantiomeric poly(lactic acid‐co‐alanine)s with ester and amide linkages, Polym. Chem. 2018, 9(5), 565–575.
70 70. N. Mulchandani, A. Gupta, K. Masutani, S. Kumar, S. Sakurai, Y. Kimura, et al., Effect of block length and stereocomplexation on the thermally processable poly(ε‐caprolactone) and poly(lactic acid) block copolymers for biomedical applications, ACS Appl. Polym. Mater. 2019, 1(12), 3354–3365.
71 71. N. Mulchandani, A. Prasad, V. Katiyar, Chapter 4—Resorbable polymers in bone repair and regeneration, in: V. Grumezescu, A. M. Grumezescu (Eds.), Materials for Biomedical Engineering, Elsevier, Amsterdam, 2019, pp. 87–125.
72 72. C. Garofalo, G. Capuano, R. Sottile, R. Tallerico, R. Adami, E. Reverchon, et al., Different insight into amphiphilic PEG‐PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake, Biomacromolecules 2014, 15(1), 403–415.
73 73. W. Zhang, D. Zhang, X. Fan, G. Bai, G. Yuming, Z. Hu, Stable stereocomplex micelles from Y‐shaped amphiphilic copolymers MPEG–(scPLA)2: preparation and characteristics. RSC Adv. 2016, 6(25), 20761–20771.
74 74. C. Feng, M. Piao, D. Li, Stereocomplex‐reinforced PEGylated polylactide micelle for optimized drug delivery, Polym. (Basel) 2016, 8(4), 165.
75 75. Y. Yu, J. Zou, L. Yu, W. Ji, Y. Li, W.‐C. Law, et al., Functional polylactide‐g‐paclitaxel–poly(ethylene glycol) by azide–alkyne click chemistry, Macromolecules 2011, 44(12), 4793–4800.
76 76. N. Mulchandani, A. Gupta, V. Katiyar, Polylactic acid‐based hydrogels and its renewable characters: tissue engineering applications, in: M. I. H. Mondal (Ed.), Cellulose‐Based Superabsorbent Hydrogels, Springer International Publishing, Cham, 2019, pp. 1537–1559.
77 77. S. Noack, D. Schanzenbach, J. Koetz, H. Schlaad, Polylactide‐based amphiphilic block copolymers: crystallization‐induced self‐assembly and stereocomplexation, Macromol. Rapid Commun. 2019, 40(1), 1800639.
78 78. C. Wang, N. Feng, F. Chang, J. Wang, B. Yuan, Y. Cheng, et al., Injectable cholesterol‐enhanced stereocomplex polylactide thermogel loading chondrocytes for optimized cartilage regeneration, Adv. Healthcare Mater. 2019, 8(14), 1900312.
79 79. Y. Sun, C. He, Synthesis and stereocomplex crystallization of poly(lactide)–graphene oxide nanocomposites, ACS Macro Lett. 2012, 1(6), 709–713.
80 80. A. Gupta, A. K. Pal, E. M. Woo, V. Katiyar, Effects of amphiphilic chitosan on stereocomplexation and properties of poly(lactic acid) nano‐biocomposite, Sci. Rep. 2018, 8(1), 4351.
81 81. A. Gupta, V. Katiyar, Cellulose functionalized high molecular weight stereocomplex polylactic acid biocomposite films with improved gas barrier, thermomechanical properties, ACS Sustain. Chem. Eng. 2017, 5(8), 6835–6844.
82 82. A. Gupta, A. Prasad, N. Mulchandani, M. Shah, M. Ravi Sankar, S. Kumar, et al., Multifunctional nanohydroxyapatite‐promoted toughened high‐molecular‐weight stereocomplex poly(lactic acid)‐based bionanocomposite for both 3D‐printed orthopedic implants and high‐temperature engineering applications, ACS Omega 2017, 2(7), 4039–4052.
83 83. Bioplastics MAGAZINE, “Total corbion PLA launches full stereocomplex PLA technology”, Polymedia Publisher GmbH, Mönchengladbach, Germany, Issue 03, May 2018
84 84. A. Greiner, J. H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Edn. 2007, 46(30), 5670–5703.
85 85. Y. Furuhashi, Y. Kimura, H. Yamane, Higher order structural analysis of stereocomplex‐type poly(lactic acid) melt‐spun fibers, J. Polym. Sci. Part B‐Polym. Phys. 2007, 45, 218–228.
86 86. M. Takasaki, H. Ito, T. Kikutani, Development of stereocomplex crystal of polylactide in high‐speed melt spinning and subsequent drawing and annealing processes, J. Macromol. Sci. Part B 2003, 42(3–4), 403–420.
87 87. M. Takasaki, H. Ito, T. Kikutani, Development of stereocomplex crystal of polylactide in high‐speed melt spinning and subsequent drawing and annealing processes, J. Macromol. Sci. Part B Phys. 2007, 42(3 & 4), 403–420.
88 88. D. Masaki, Y. Fukui, K. Toyohara, M. Ikegame, B. Nagasaka, H. Yamane, Stereocomplex formation in the poly(l‐lactic acid)/poly(d‐lactic acid) melt blends and the melt spun fibers, Sen'i Gakkaishi 2008, 64(8), 212–219.
89 89. B. Wang, B. Li, J. Xiong, C. Y. Li, Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization, Macromolecules 2008, 41(24), 9516–9521.
90 90. S. Boi, L. Pastorino, O. Monticelli, Multi applicable stereocomplex PLA particles decorated with cyclodextrins, Mater. Lett. 2019, 250, 135–138.
91 91. O. Monticelli, M. Putti, L. Gardella, D. Cavallo, A. Basso, M. Prato, et al., New stereocomplex PLA‐based fibers: effect of POSS on polymer functionalization and properties, Macromolecules 2014, 47(14), 4718–4727.
92 92. S. Regnell Andersson, M. Hakkarainen, S. Inkinen, A. Södergård, A.‐C. Albertsson, Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures, Biomacromolecules 2012, 13(4), 1212–1222.
93 93. C. Zhu, W. Jiang, J. Hu, P. Sun, A. Li, Q. Zhang, Polylactic acid nonwoven fabric surface modified with stereocomplex crystals for recyclable use in oil/water