Теорема зонтика, или Искусство правильно смотреть на мир через призму математики. Микаэль Лонэ

Чтение книги онлайн.

Читать онлайн книгу Теорема зонтика, или Искусство правильно смотреть на мир через призму математики - Микаэль Лонэ страница 3

Теорема зонтика, или Искусство правильно смотреть на мир через призму математики - Микаэль Лонэ Красота математики

Скачать книгу

которая скрывается за ним, проста, но глубока. Это не загадка, решение которой неожиданно приходит в голову, и мы восклицаем: «Ах! Вот, в чем дело, я понял!» Нам придется поменять наше понимание природы чисел и сам подход к счету. Если закон Бенфорда не кажется нам очевидным, то это потому, что мы неправильно думаем. Нам придется научиться по-другому смотреть на то, что нам кажется таким знакомым. Нам придется снова ставить под сомнения свои суждения.

      Из экскурсии по миру, который только что нам открыл Фрэнк Бенфорд, мы вернемся другими. Его закон изменит вас. И когда вы его поймете, вы будете думать совсем иначе.

      Мультипликативное мышление

      Повседневность часто намекает, что мы плохо управляемся с числами. Что с нами – или с ними – что-то не так.

      У меня есть небольшая история на эту тему.

      Несколько лет назад на вечеринке, которую мы с друзьями посвятили играм, кому-то пришла в голову идея устроить научную викторину. Мы разбились на две команды и отвечали на вопросы из разных сфер: от математики и геологии до биологии и информатики. На каждый вопрос команда должна была дать приблизительный ответ в численном выражении, и та, чей ответ был ближе всего к верному, зарабатывала очко. Правило казалось довольно простым и ясным. И все же после нескольких раундов вопрос из области астрономии вызвал неожиданный спор.

      Нас спросили, каково расстояние между Землей и Луной.

      В нашей команде никто не знал точного ответа, но, поразмыслив, мы ответили, что оно составляет 800 000 км. В команде противника переговоры оказались куда более напряженными, но в конце концов они объявили свой ответ: 10 км!

      Очевидно, в этой команде в астрономии разбирались еще хуже, чем в нашей. Высочайшая вершина Земли, гора Эверест, достигает в высоту почти 9 км. Если бы Луна находилась всего в 10 км от Земли, чтобы коснуться нашего спутника, достаточно было бы подняться на гору. Абсурдный ответ. Еще одно очко, казалось мне, у нас в кармане.

      Тем не менее правильный ответ нас озадачил. Луна на самом деле находится на расстоянии 384 000 км от Земли. Таким образом, простое вычитание показало нам, что мы ошиблись на 416 000 км, в то время как команда противника ошиблась только на 383 990 км.

      Я моргнул и посчитал еще раз. Ошибки не было. Признаться, я даже нацарапал небольшую схему на бумажной салфетке, чтобы окончательно убедиться.

      Сомнений не было: их ответ был ближе к правильному, чем наш. Они победили. Несколько минут я пересчитывал и прокручивал расчет в голове, но ничего не поделаешь. Математика была категорична.

      Но все же, вам не кажется, что эта ситуация несправедлива? Да, возможно я выгляжу, как человек, который не умеет проигрывать, но вы не думаете, что, несмотря на результат, наш ответ был более разумным, более продуманным и, в некотором смысле, менее неправильным, чем у другой команды?

      Но почему в таком случае математика говорит об обратном? Почему расчеты показывают, что почти абсурдный

Скачать книгу