Properties for Design of Composite Structures. Neil McCartney

Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 12

Properties for Design of Composite Structures - Neil McCartney

Скачать книгу

clear understanding of the key physical processes that are involved, and they provide methods of assessing whether, or not, candidate materials have good prospects of being used as improved engineering materials. Analytical models can also be used to develop exact solutions to relatively simple and amenable practical situations. These solutions can be used as special cases to validate the numerical methods which have much wider applicability.

      The principal objectives of this book are to present, in a single publication, a description of the derivations of selected theoretical methods of predicting the effective properties of composite materials for situations where they are either undamaged or are subject to damage in the form of matrix cracking, in fibre-reinforced unidirectional composites, or in the plies of laminates, or to a lesser extent on the interfaces between neighbouring plies. The major focus of the book is on derivations of analytical formulae which can be the basis of software that is designed to predict composite behaviour, e.g. prediction of properties and growth of damage and its effect on composite properties. Software will be available from the John Wiley & Sons, Inc. website [1] including examples of software predictions associated with relevant chapters of this book.

      There is no attempt in this book to provide comprehensive accounts of relevant parts of the literature, although reference will be made to source publications related to the analytical methods described in the book. Some topics considered in this book, e.g. the chapters on particulate composites, delamination, fatigue damage and environmental damage, have been included to extend the range of applicability of the analytical methods described in the book. The content of these chapters is based essentially on specific publications by the author that are available in the literature.

      Reference

      1 1. John Wiley & Sons, Inc. website (www.wiley.com/go/mccartney/properties).

      Overview: This chapter introduces the basic principles on which the mechanics of continua are based. Having defined the concepts of vectors and tensors, the physical quantities displacement and velocity are defined for continuous systems and then applied to the fundamental balance laws for mass, momentum (linear and angular) and energy. The principles of the thermodynamics of multicomponent fluid systems are first introduced. The strain tensor is then introduced so that the thermodynamic approach can be extended to solid systems for the single-component solids that will be considered in this book. The fundamental equations are then described for linear thermoelastic solids subject to infinitesimal deformations. The chapter then specifies the constitutive equations required for the analysis of anisotropic solids that will be encountered throughout the book, including the transformation of anisotropic properties following rotation about a given coordinate axis. The chapter concludes by considering bend formation applied to a homogeneous orthotropic plate.

      2.1 Introduction

      The principal objective of this book is to develop theoretical models and associated software that can predict the deformation behaviour of composite materials for situations where the system is first undamaged, but then develops progressively growing damage as the applied loading is gradually increased. Even though the composite systems are heterogeneous, continuum methods can be applied to each constituent of the composite, and to assist in the development of models for homogenised effectively continuous systems where the details of the reinforcement and damage distribution have been smoothed, and where effective properties may be defined.

      2.2 Vectors

      A vector v is a mathematical entity that possesses both a magnitude and a direction. The vector is usually a physical quantity that is independent of the coordinate system that will be used to describe its properties. A very convenient approach is first to define an orthonormal set of coordinates (x1,x2,x3). Three axes are drawn in the x1,x2 and x3 directions, which are all at right angles to one another. Such a system is often described as a Cartesian set of coordinates. The positive directions of the x1, x1 and x3 axes are described by unit vectors i1 i2 and i3, respectively, where i1=(1,0,0),i2=(0,1,0),i3=(0,0,1). The unit vectors are such that

      

(2.1)

      The three coordinates (x1,x2,x3) describe the location of a point x that is known as the position vector, which may be written as x=x1i1+x2i2+x3i3. In tensor theory

Скачать книгу