Properties for Design of Composite Structures. Neil McCartney

Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 34

Properties for Design of Composite Structures - Neil McCartney

Скачать книгу

      2.18 Analysis of Bend Deformation

      For most engineering applications of composite components, the deformation experienced in service conditions will involve some degree of bending. As the effect of bending on ply crack formation in composite laminates is considered in Chapters 11 and 19, it is useful to describe here the essential fundamental aspects of an analysis of bend deformation for a uniform orthotropic plate.

      2.18.1 Geometry and Basic Equations

      Figure 2.2 Schematic diagram of part of a rectangular orthotropic plate of length 2L and depth h, and coordinate system. The x2-axis and u2 displacement are directed out of the plane of the page, and the width is denoted by 2W.

      The beam is assumed to be in a state of orthogonal bending combined with uniform through-thickness loading such that

      and

      where the strain parameters ε¯A, ε¯T, ε^A and ε^T, the through-thickness stress σt and the temperature difference ΔT are assumed for the moment to be known. From (2.143), (2.209) and (2.211), the in-plane strains and shear stress are given by

      The expression for ε22 in (2.209) is first solved for the stress component σ22 so that

      sigma 22 equals nu Subscript normal upper A Baseline StartFraction upper E Subscript normal upper T Baseline Over upper E Subscript normal upper A Baseline EndFraction sigma 11 plus nu Subscript normal t Baseline sigma Subscript normal t Baseline plus upper E Subscript normal upper T Baseline left-parenthesis epsilon overbar Subscript normal upper T Baseline plus ModifyingAbove epsilon With caret Subscript normal upper T Baseline x 3 right-parenthesis minus upper E Subscript normal upper T Baseline alpha Subscript normal upper T Baseline upper Delta upper T period(2.213)

      It then follows from (2.209) that

      epsilon 11 equals StartFraction sigma 11 Over upper E overTilde Subscript normal upper A Baseline EndFraction minus StartFraction nu overTilde Subscript normal a Baseline Over upper E overTilde Subscript normal upper A Baseline EndFraction sigma Subscript normal t Baseline plus alpha overTilde Subscript normal upper A Baseline upper Delta upper T minus nu Subscript normal upper A Baseline StartFraction upper E Subscript normal upper T Baseline Over upper E Subscript normal upper A Baseline EndFraction left-parenthesis epsilon overbar Subscript normal upper T Baseline plus ModifyingAbove epsilon With caret Subscript normal upper T Baseline x 3 right-parenthesis comma(2.214)

      where

Скачать книгу