Sustainable Nanotechnology. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Sustainable Nanotechnology - Группа авторов страница 28

Sustainable Nanotechnology - Группа авторов

Скачать книгу

them. The use of a life cycle assessment method, combined with risk assessment, to understand the potential problems and to implement green nanomanufacturing methods that are less troublesome to the environment and human health, is currently in progress. Considering the efforts made by different organizations all over the world, there is an opportunity to consider new universally agreed free‐of‐bias regulatory standards, with special emphasis on the uniform assessment techniques. As a long‐time requirement, a harmonized initiative is also required for the toxicology testing of each NM and products based on it and for reporting them on a single platform. In the near future, with such harmonized efforts, nanotechnology will predictably include sustainability standards to reduce its impacts on the environment and human health using sustainable manufacturing practices and employing possible alternatives.

      1 1 Eason, T., Meyer, D.E., Curran, M.A., and Upadhyayula, V.K. (2011). Guidance to facilitate decisions for sustainable nanotechnology.

      2 2 Wiek, A., Foley, R.W., and Guston, D.H. (2014). Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems? In: Nanotechnology for Sustainable Development (ed. M.S. Diallo, N.A. Fromer and M.S. Jhon). Cham: Springer International Publishing.

      3 3 Hutchison, J.E. (2016). The road to sustainable nanotechnology: challenges, progress and opportunities. ACS Sustainable Chemistry & Engineering 4 (11): 5907–5914.

      4 4 Falsini, S., Bardi, U., Abou‐Hassan, A., and Ristori, S. (2018). Sustainable strategies for large‐scale nanotechnology manufacturing in the biomedical field. Green Chemistry 20 (17): 3897–3907.

      5 5 Roco, M.C. (2005). Environmentally responsible development of nanotechnology. Environmental Science & Technology 39 (5): 106A–112A.

      6 6 Brinker, C.J. and Ginger, D. (2011). Nanotechnology for sustainability: energy conversion, storage, and conservation. In: Nanotechnology Research Directions for Societal Needs in 2020, 261–303. Springer.

      7 7 Sohail, M.I., Waris, A.A., Ayub, M.A. et al. (2019). Environmental application of nanomaterials: a promise to sustainable future. Comprehensive Analytical Chemistry 87: 1–54.

      8 8 Li, C. and Yue, Y. (2014). Fluorescence spectroscopy of graphene quantum dots: temperature effect at different excitation wavelengths. Nanotechnology 25 (43): 435703.

      9 9 Iavicoli, I., Leso, V., Ricciardi, W. et al. (2014). Opportunities and challenges of nanotechnology in the green economy. Environmental Health 13: 78.

      10 10 Cui, Q., Hernandez, R., Mason, S.E. et al. (2016). Sustainable nanotechnology: opportunities and challenges for theoretical/computational studies. The Journal of Physical Chemistry B 120 (30): 7297–7306.

      11 11 Allianz‐Aktiengesellschaft. (2005). Opportunities and risks of nanotechnologies: report in Co‐operation with the OECD International Futures Programme. Allianz Center for Technology.

      12 12 Yuliarto, B., Septiani, N.L.W., Kaneti, Y.V. et al. (2019). Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio‐related applications. New Journal of Chemistry 43 (40): 15846–15856.

      13 13 Almosni, S., Delamarre, A., Jehl, Z. et al. (2018). Material challenges for solar cells in the twenty‐first century: directions in emerging technologies. Science and Technology of Advanced Materials 19 (1): 336–369.

      14 14 Nozik, A.J., Beard, M.C., Luther, J.M. et al. (2010). Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third‐generation photovoltaic solar cells. Chemical Reviews 110 (11): 6873–6890.

      15 15 Oh, J., Yuan, H.‐C., and Branz, H.M. (2012). An 18.2%‐efficient black‐silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotechnology 7 (11): 743–748.

      16 16 Garnett, E. and Yang, P. (2010). Light trapping in silicon nanowire solar cells. Nano Letters 10 (3): 1082–1087.

      17 17 Ghernaout, D., Alghamdi, A., Touahmia, M. et al. (2018). Nanotechnology phenomena in the light of the solar energy. Journal of Energy, Environmental & Chemical Engineering 3: 1–8.

      18 18 Sharma, P. and Bhargava, M. (2013). Applications and characteristics of nanomaterials in industrial environment. Research and Development (IJCSEIERD) 3 (4): 63–72.

      19 19 Ray, P.C., Yu, H., and Fu, P.P. (2009). Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews 27 (1): 1–35.

      20 20 Gatoo, M.A., Naseem, S., Arfat, M.Y. et al. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Research International 2014: 1–8.

      21 21 Bar‐Ilan, O., Louis, K.M., Yang, S.P. et al. (2012). Titanium dioxide nanoparticles produce phototoxicity in the developing zebrafish. Nanotoxicology 6 (6): 670–679.

      22 22 Bar‐Ilan, O., Chuang, C.C., Schwahn, D.J. et al. (2013). TiO2 nanoparticle exposure and illumination during zebrafish development: mortality at parts per billion concentrations. Environmental Science & Technology 47 (9): 4726–4733.

      23 23 De Jong, W.H., Hagens, W.I., Krystek, P. et al. (2008). Particle size‐dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29 (12): 1912–1919.

      24 24 Donaldson, K. and Stone, V. (2003). Current hypotheses on the mechanisms of toxicity of ultrafine particles. Annali dell'Istituto Superiore di Sanità 39 (3): 405–410.

      25 25 Gurr, J.‐R., Wang, A.S.S., Chen, C.‐H., and Jan, K.‐Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213 (1): 66–73.

      26 26 Asgharian, B. and Price, O.T. (2007). Deposition of ultrafine (NANO) particles in the human lung. Inhalation Toxicology 19 (13): 1045–1054.

      27 27 Guo, C., Wang, J., Jing, L. et al. (2018). Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles. Environmental Pollution 236: 926–936.

      28 28 Krzysztof, S., Magdalena, C., Magdalena, M.‐K. et al. (2019). Toxicity of metallic nanoparticles in the central nervous system. Nanotechnology Reviews 8 (1): 175–200.

      29 29 Cao, Y. (2018). The toxicity of nanoparticles to human endothelial cells. Adv. Exp. Med. Biol. 1048: 59–69.

      30 30 Hannon, G., Lysaght, J., Liptrott, N.J., and Prina‐Mello, A. (2019). Immunotoxicity considerations for next generation cancer nanomedicines. Advanced Science 6 (19): 1900133.

      31 31 Chen, L., Liu, J., Zhang, Y. et al. (2018). The toxicity of silica nanoparticles to the immune system. Nanomedicine 13 (15): 1939–1962.

      32 32 Nel, A., Xia, T., Mädler, L., and Li, N. (2006). Toxic potential of materials at the nanolevel. Science 311 (5761): 622–627.

      33 33 Yin, H., Too, H.P., and Chow, G.M. (2005). The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26 (29): 5818–5826.

      34 34 Gupta, A.K. and Gupta, M. (2005). Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26 (13): 1565–1573.

      35 35

Скачать книгу