Экспонента. Как быстрое развитие технологий меняет бизнес, политику и общество. Азим Ажар

Чтение книги онлайн.

Читать онлайн книгу Экспонента. Как быстрое развитие технологий меняет бизнес, политику и общество - Азим Ажар страница 14

Экспонента. Как быстрое развитие технологий меняет бизнес, политику и общество - Азим Ажар МИФ Бизнес

Скачать книгу

интереса к тому, чем занимать искусственный интеллект. Ученые бросились создавать системы ИИ, применяя глубокие нейронные сети и их производные для решения огромного количества задач – от поисков производственных дефектов до перевода с языка на язык, от распознавания голоса до выявления мошенничеств с кредитными картами, от создания новых лекарств до рекомендаций видеофильмов, отвечающих вкусам конкретного зрителя. Инвесторы охотно открывали карманы для поддержки этих изобретателей. В кратчайшие сроки глубокое обучение проникло повсюду. В результате нейронные сети требовали все большего объема данных и все большей вычислительной мощности. В 2020 году нейронная сеть GPT-3, которая использовалась для генерирования текста, порой неотличимого от созданного человеком, использовала 175 миллиардов параметров – примерно в три тысячи раз больше, чем у AlexNet.

      Однако если новый подход к вычислениям – искусственный интеллект, то каковы необходимые ему мощности? С 2012 по 2018 год компьютерная мощность, используемая для обучения крупнейших моделей ИИ, росла примерно в шесть раз быстрее, чем темпы, о которых говорилось в законе Мура. На графике ниже показан рост вычислительных операций, используемых в современных системах ИИ, на фоне экспоненциальной кривой закона Мура за тот же период. Если бы использование вычислительных мощностей ИИ следовало кривой закона Мура, то за шесть лет оно бы выросло примерно в семь раз. На деле же оно увеличилось в триста тысяч раз[38].

      Рис. 4. Относительная вычислительная мощность, используемая ИИ, по сравнению с прогнозами закона Мура

      Источник: Open AI, анализ для Exponential View

      Ошеломляющая статистика. Ее можно объяснить именно тем процессом, который Рэй Курцвейл определил десятилетиями ранее. В тот самый момент, когда мы подбирались к пределам старого метода (размещения большего числа транзисторов на чип), ученые, опираясь на несколько иной подход, предложили новое решение.

      Ответ кроется в типе используемых чипов. Исследователи ИИ, такие как Алекс Крижевский, заменили традиционные компьютерные чипы теми, что были разработаны для высококачественной графики для видеоигр. Использовать такие чипы для повседневных вычислений смысла не имеет, но они оказались удивительно пригодными для ИИ. В частности, они хороши в математике. Вычисления, необходимые для создания реалистичных сцен в видеоиграх, требовали множества умножений. Чтобы заставить сложную нейронную сеть работать, нужно было выполнить миллионы, а иногда и миллиарды таких умножений, и графические чипы справлялись с этой задачей.

      Когда стало понятно, что рынок таких чипов расширяется, компьютерная индустрия приняла вызов. Разработчикам искусственного интеллекта требовалось больше мощности, и специализированные чипы позволяли этого добиваться. Калифорнийская компания Cerebras и британская Graphcore начали производить чипы, предназначенные

Скачать книгу


<p>38</p>

Dario Amodei and Danny Hernandez, “AI and Compute,” OpenAI, May 16, 2018. https://openai.com/blog/ai-and-compute/.