Математическое моделирование исторической динамики. Олег Евгеньевич Царьков

Чтение книги онлайн.

Читать онлайн книгу Математическое моделирование исторической динамики - Олег Евгеньевич Царьков страница 19

Математическое моделирование исторической динамики - Олег Евгеньевич Царьков

Скачать книгу

ДИНАМИЧЕСКИЕ МОДЕЛИ

      „Движение каравана определяет шаг самого медлительного осла” (Омар Хайам?)

      Динамические модели позволяют описать намного более широкий спектр возможных траекторий и обладают важным преимуществом – наличием обратной связи, позволяющей системе саморегулироваться. Таким образом, формальный математический аппарат незаменим, когда надо строго связать набор предположений относительно системы с прогнозами ее динамики, описываемых параметрами. Например, в экономико-демографических моделях это число людей и ресурсы, которые производит общество, в социально-политических это также население и политическая стабильность110, военно-политических – военно-технический потенциал, мобилизационные ресурсы и логистика. В них в качестве динамических переменных могут выступать геополитическая мощь и энтропия. Они обычно характеризуются нелинейными обратными связями, часто действующими с различными запаздываниями во времени.

      Нелинейные модели являются более богатыми в функциональном смысле. В связи с этим существует настоятельная необходимость включения в инструментарий социально-экономического моделирования логистических уравнений, отражающих запаздывание во времени111. Их применение обеспечивает динамическое разнообразие, которое позволяет преодолеть ограниченность линейных систем, описывющих динамические процессы. В них также применяются временные лаги, но сложность математического аппарата112 не позволяет широко его применять.

      Например, макроэкономическое моделирование с запаздыванием113 было использовано при исследовании тенденций развития и прогноз будущего развития после вмешательства регулятора. В частности, Р. Гудвин предложил ввести нелинейность запаздывания таким образом, чтобы полученные уравнения имели устойчивый предельный цикл. Его экономические предположения и модель вызвали ряд критических замечаний, а полвека спустя выяснилось, что им в математических преобразованиях допущена ошибка114. Вследствие этого вывод Гудвина о существовании единственного устойчивого цикла оказался ошибочным. Данный пример иллюстрирует, что применение математического аппарата с недостаточно развитой теорией может привести к неадекватным выводам, но является стимулом для дальнейшего прогресса науки.

      Возможность научного изучения кризисов долгое время подвергалась сомнению в силу неповторимости и уникальности таких явлений. При их детальном изучении обнаружено много общего и, в частности, доказано, что любое событие – результат самоорганизации открытой системы. Дальнейшие исследования данной проблемы привели к появлению теории катастроф, объединившей две математические дисциплины – теорию гладких отображений115 и теорию бифуркаций динамических систем. Для дальнейшей работы введём некоторые необходимые понятия. Пусть   и  – пространства переменных   и соответственно, D* и D –

Скачать книгу


<p>110</p>

Вторую переменную можно оценить по числу и интенсивности внутренних конфликтов, социальной напряжённости и т.д.

<p>111</p>

Биологические модели Лотки-Вольтерра

<p>112</p>

Теория уравнений с последействием

<p>113</p>

П. Самуэльсон, И. Хикс, М. Калецкий, Р. Гудвин и др.

<p>114</p>

Более подробно см. А.В. Прасолов доказал, что при втором преобразовании получилось уравнение опережающего типа, где стационарное решение всегда неустойчиво

<p>115</p>

Thom R. Structural Stability and Morphogenesis: an Outline of a General Theory of Models