Новые идеи в философии. Сборник номер 5. Коллектив авторов
Чтение книги онлайн.
Читать онлайн книгу Новые идеи в философии. Сборник номер 5 - Коллектив авторов страница 6
Где же логические корни научной плодотворности этого принципа и каково вообще логическое значение того внутреннего преобразования, которое испытала под его влиянием математика? – Вполне справедливо указывают на то, что современная математика, в противоположность античной, отличается качественным, а не количественным характером. Действительно, сущность числа она усматривает не в его количественной исчислимости, а в свойственной ему качественной закономерности. Ибо однозначная определенность и отличимость числа обусловлена исключительно этой качественной закономерностью и не зависит вовсе от его количественная значения (его конечности или бесконечности). Всякое число необходимо входит, как член, в какой-нибудь закономерно построенный ряд чисел и занимает в нем определенное место. Если известен закон ряда и даны отношения искомого числа к остальным его членам, т. е. отношения, которыми обусловливается занимаемое им в данном ряде место, то, независимо от его количественного значения, выполнены все условия, которые необходимы и вместе с тем достаточны для его полного и исчерпывающего определения. Количественные же значения математических чисел и величин (их исчислимость и измеримость) представляют лишь частные случаи их качественных значений и потому применимы только в пределах конечного. Что это так, т. е. что принцип Архимеда, действительно, не охватывает всей сферы математического бытия, а имеет силу лишь в ограниченной ее части, явствует уже из того, что, даже оставаясь в границах конечных рациональных чисел, математика сплошь и рядом наталкивается на такие задачи, которые без выхождения за пределы конечного либо вовсе неразрешимы, либо разрешимы только при допущении некоторой погрешности, противоречащей самому существу математики как точной науки (например, когда в результате арифметических действий над конечными рациональными числами получаются иррациональные или мнимые числа). Вместе с введением принципа бесконечного в математику сразу устраняются все эти затруднения. Sub specie infiniti раскрывается полная независимость основных законов математического объекта от его количественных