Расколотый мир. Опыт анализа психодинамики личности человека в экстремальных условиях жизнедеятельности. Д. В. Сочивко

Чтение книги онлайн.

Читать онлайн книгу Расколотый мир. Опыт анализа психодинамики личности человека в экстремальных условиях жизнедеятельности - Д. В. Сочивко страница 22

Расколотый мир. Опыт анализа психодинамики личности человека в экстремальных условиях жизнедеятельности - Д. В. Сочивко

Скачать книгу

общих свойств. Так, холерик и меланхолик одинаково характеризуются высоким нейротизмом, а флегматик и меланхолик имеют одинаково низкую экстравертированность. Напротив, холерик и флегматик не имеют между собой ничего общего. Отношение «иметь хотя бы одно общее свойство» является отношением толерантности. Действительно, каждый тип имеет сам с собой даже два общих свойства, и если он имеет общее свойство с «соседним» типом, то и тот имеет это же общее свойство с ним. Например, холерик и сангвиник находятся в отношении толерантности так же, как холерик и меланхолик, в то время как меланхолик и сангвиник – нет, также как и холерик и флегматик. Действительно, как на основе интуитивных представлений, так и из многочисленной литературы ясно, что сангвиника с меланхоликом, также как и флегматика с холериком, спутать очень трудно, в то время как в зависимости от ситуации флегматик может вести себя как меланхолик или как сангвиник, холерик также может впадать в меланхолию или, напротив, быть спокойным как сангвиник. Таким образом, мы видим, что отношение толерантности, заданное на том же самом множестве, позволяет с несколько иной точки зрения взглянуть на проблемы психологических типов. Мы видим, что даже такие простейшие модели как множества с заданным отношением уже в существенной мере определяют направление исследовательского поиска. Легко понять, каким мощным орудием располагает исследователь, если он ясно представляет себе, с какой моделью работает.

      1.2. Отображения и функции

      Мы уже ввели понятие пары объектов. Рассмотрим теперь следующее множество пар. Пусть имеется два множества А и В. Рассмотрим множество таких пар объектов, где первый элемент всегда выбирается из множества А, а второй – из B. Все множество таких пар образует множество А и B. Ограничим теперь указанное соответствие следующим условием. Пусть каждый элемент из А имеет только единственную пару из множества B. Такое ограниченное соответствие называется отображением множества A в множество B, и обозначается f : A → B т. е. (а, b) ∈ f или в другой записи f (а) = b.

      Рассмотрим некоторые важные свойства отображений. Будем называть элемент b = f (а) образом элемента а, а сам элемент а прообразом элемента b. Соответственно все множество А всегда является прообразом при отображении f, а множество В содержит в себе некоторое подмножество, которое является образом множества А. Если образ множества А совпадает со всем множеством В, т. е. каждый элемент из В имеет хотя бы один прообраз, то отображение называется сюръективным или обладает свойством сюръективности. В множестве В могут, однако, быть элементы, которые не являются образами никаких элементов из А, если а при этом еще каждый из тех элементов, которые являются образами элементов из А, имеет единственный прообраз, то такое отображение называется инъективным или обладает свойством инъективности. Если отображение одновременно

Скачать книгу