Логико-философский трактат. Философские исследования. Людвиг Витгенштейн

Чтение книги онлайн.

Читать онлайн книгу Логико-философский трактат. Философские исследования - Людвиг Витгенштейн страница 14

Логико-философский трактат. Философские исследования - Людвиг Витгенштейн Philosophy – Неоклассика

Скачать книгу

что все суждения суть обобщения элементарных суждений.)

      4.53. Общая пропозициональная форма – переменная.

      5. Суждение – функция истинности элементарных суждений. (Элементарное суждение есть собственная функцияистинности.)

      5.01. Элементарные суждения выступают аргументами истинности суждений.

      5.02. Аргументы функций нередко смешивают с индексами имен. Поскольку и аргументы, и индексы позволяют узнавать значения знаков, их содержащих.

      Например, когда Рассел пишет: «+ c», «c» представляет собой индекс, который указывает, что данный знак есть дополнительный знак количественного числа. Но использование этого знака является результатом произвольной договоренности, и вполне возможно выбрать простой знак вместо «+c»; но в выражении «~p» «p» является не индексом, а аргументом: смысл выражения «~p» нельзя понять до тех пор, пока нам неизвестен смысл «p». (В имени «Юлий Цезарь» индексом будет «Юлий». Индекс всегда часть описания объекта, к имени которого мы его прибавляем; в данном случае Цезарь из рода Юлиев.)

      Если я не ошибаюсь, теория Фреге относительно значения суждений и функций основана на смешении аргументов и индексов. Фреге рассматривал логические суждения как имена, а их аргументы – как индексы этих имен.

      5.1. Функции истинности могут организовываться в последовательности. Вот основа теории вероятности.

      5.101. Функции истинности заданного числа элементарных суждений всегда можно отразить в схеме следующего вида:

      (ИИИИ) (p, q) Тавтология (если p, то p, и если q, то q) (p ⊃ p × q ⊃ q)

      (ЛИИИ) (p, q) Словами: Не p и не q вместе. [~ (p × q)]

      (ИЛИИ) (p, q) Словами: Если q, то p. [q ⊃ p]

      (ИИЛИ) (p, q) Словами: Если p, то q. [p ⊃ q]

      (ИИИЛ) (p, q) Словами: p или q. [p ∨ q]

      (ЛЛИИ) (p, q) Словами: Не q. [~q]

      (ЛИЛИ) (p, q) Словами: Не p. [~p]

      (ЛИИЛ) (p, q) Словами: p или q, но не вместе. [p × ~q: ∨: q × ~p]

      (ИЛЛИ) (p, q) Словами: Если p, то q, и если q, то p. [p ≡ q]

      (ИЛИЛ) (p, q) Словами: p.

      (ИИЛЛ) (p, q) Словами: q.

      (ЛЛЛИ) (p, q) Словами: Ни p, ни q. [~p × ~q или p | q]

      (ЛЛИЛ) (p, q) Словами: p, но не q. [p × ~q]

      (ЛИЛЛ) (p, q) Словами: q, но не p. [q × ~p]

      (ИЛЛЛ) (p, q) Словами: q и p. [q × p]

      (ЛЛЛЛ) (p, q) Противоречие (p и не p, и q и не q).[p × ~p. q × ~q]

      Я назову основаниями истинности суждения те возможности истинности его истинностных аргументов, которые делают суждение истинным.

      5.11. Если все основания истинности, общие какому-либо числу суждений, являются и основаниями истинного некоего конкретного суждения, мы говорим, что истинность этого суждения следует из истинности других.

      5.12. В частности, истинность суждения «p» следует из истинности суждения «q», если все основания истинности последнего являются и основаниями истинности первого.

      5.121. Основания истинности одного содержатся в основаниях истинности другого: p следует из q.

      5.122.

Скачать книгу