Рынок облигаций. Анализ и стратегии. Фрэнк Дж. Фабоцци

Чтение книги онлайн.

Читать онлайн книгу Рынок облигаций. Анализ и стратегии - Фрэнк Дж. Фабоцци страница 39

Рынок облигаций. Анализ и стратегии - Фрэнк Дж. Фабоцци

Скачать книгу

начальной доходности у*, тем хуже аппроксимация. Очевидно, что точность аппроксимации непосредственно связана с выпуклостью кривой, отражающей зависимость цена – доходность облигации.

      Измерение выпуклости

      Дюрация (модифицированная или долларовая) предполагает описание выпуклой функции с помощью прямой линии (касательной). Возможно ли найти математическую формулу, обеспечивающую лучшую аппроксимацию изменений цены на облигацию при изменении требуемой доходности?

      Попробуем применить первые два члена ряда Тейлора и аппроксимировать ценовые изменения следующим образом[23]:

      (4.15)

      Делим обе части равенства (4.15) на Р и получаем процентное изменение цены:

      (4.16)

      Первый член правой части равенства (4.15) – это выражение (4.14), т. е. долларовое изменение цены, измеренное на основе долларовой дюрации. Таким образом, первый член в выражении (4.15) – искомая аппроксимация абсолютных ценовых изменений на основе дюрации. В выражении (4.16) первый член правой части равенства – аппроксимация процентных изменений цены на основе модифицированной дюрации.

      Вторые члены выражений (4.15) и (4.16) включают вторую производную функции цены (уравнения (4.1)). Это та самая вторая производная, которую мы используем в качестве поправки для учета влияния выпуклости зависимости цена – доходность. Вторую производную цены принято называть долларовой мерой выпуклости облигации. Итак:

      (4.17)

      Произведение долларовой меры выпуклости и квадрата изменения требуемой доходности является предполагаемым ценовым изменением, обусловленным выпуклостью. Таким образом, аппроксимированное изменение цены, обусловленное выпуклостью, равно:

dP = долларовая мера выпуклости × (dy)2. (4.18)

      Вторая производная, поделенная на цену, – это мера процентного изменения цены облигации, обусловленного выпуклостью; ее называют просто мерой выпуклости. Итак:

      (4.19)

      А процентное изменение цены, обусловленное выпуклостью, равно:

      (4.20)

      Вторая производная цены как функции доходности, выраженной согласно формуле (4.1), равна:

      (4.21)

      В табл. 4.7 и 4.8 приведены значения второй производной [формула (4.21)], годовой долларовой меры выпуклости и годовой меры выпуклости для двух пятилетних купонных облигаций. Мера выпуклости выражена в квадратах периодов. Для перевода меры выпуклости в годы следует поделить выражения (4.17) и (4.19) на 4 (т. е. 22). Таким образом, если денежный поток поступает m раз в году, выпуклость выражается в годах следующим образом:

      Годовая долларовая мера выпуклости и годовая мера выпуклости для наших шести гипотетических облигаций выглядят

Скачать книгу


<p>23</p>

Ряд Тейлора, описание которого можно найти в учебниках по математическому анализу, используется для аппроксимации функций. В данном случае аппроксимируемой функцией является зависимость цены от доходности.