Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса. Марио Ливио
Чтение книги онлайн.
Читать онлайн книгу Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио страница 12
Пифагорейцам принадлежит и другая заслуга – они сами обнаружили, что их «культ числа», к сожалению, не проходит проверку реальностью. Это открытие, конечно, спустило их с небес на землю. Целых чисел 1, 2, 3,… не хватало даже для того, чтобы вывести из них математику, не говоря уже об описании Вселенной.
Рис. 6
Рассмотрим квадрат на рис. 6, сторона которого принята за единицу, а длину диагонали мы обозначили d. Мы без труда найдем d при помощи теоремы Пифагора, применив ее к любому из двух прямоугольных треугольников, на которые поделен квадрат. Согласно теореме Пифагора, квадрат диагонали (гипотенузы) равен сумме квадратов двух катетов (коротких сторон): d 2 = 12 + 12, то есть d 2 = 2. Поскольку мы знаем, что квадрат – это положительное число, его легко найти, если взять квадратный корень (например, если x 2 = 9, то положительное число x = √9 = 3) Поэтому из d 2 = 2 следует, что d = √2 единиц. Итак, соотношение длины диагонали к длине стороны квадрата – это число √2. И вот тут-то пифагорейцев и ждало страшное потрясение – открытие, которое не оставило камня на камне от тщательно сконструированной пифагорейской концепции дискретных чисел. Один пифагореец (возможно, это был Гиппас из Метапонта, живший в первой половине V века до н. э. (Fritz 1945)) сумел доказать, что квадратный корень из двух нельзя выразить в виде отношения каких бы то ни было целых чисел. Иначе говоря, даже если мы располагаем бесконечным множеством целых чисел, поиски такой их пары, отношение которой даст нам √2, изначально обречены на провал.
Если число можно выразить в виде отношения двух целых чисел (например, 3/17, 2/5, 1/10, 6/1), его называют рациональным
13
О вкладе пифагорейцев в научный прогресс и об их влиянии см. Huffman 1999, Riedweg 2005, Joost-Gaugier 2006, а также Huffman 2006 в Stanford Encyclopedia of Philosophy.