Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса. Марио Ливио

Чтение книги онлайн.

Читать онлайн книгу Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио страница 6

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - Марио Ливио Золотой фонд науки

Скачать книгу

по глупости об этом не догадывались» (Gardner 2003). Как подчеркивал Конн, сторонники точки зрения «математика-открытие» (что, как мы вскоре убедимся, соответствует взглядам Платона) указывают, что как только удается усвоить какое-то одно математическое понятие, скажем, понятие натуральных чисел 1, 2, 3, 4…, как мы натыкаемся на неопровержимые факты вроде 32 + 42 = 52, и при этом не играет никакой роли, что мы думаем об этих соотношениях. Это, по крайней мере, оставляет впечатление, что мы сталкиваемся с некоей существующей реальностью.

      Но с этим согласны не все. Когда английский математик сэр Майкл Атья, получивший Филдсовскую медаль в 1966 году и Абелевскую премию в 2004 году, писал рецензию на книгу, в которой Конн излагал свои идеи, то заметил следующее (Atiyah 1995).

      Любой математик не может не сочувствовать Конну. Все мы интуитивно чувствуем, что целые числа или, скажем, окружности и в самом деле существуют в некоем абстрактном смысле и платоновское мировоззрение (о нем мы подробно поговорим в главе 2. – М. Л.) необычайно соблазнительно. Однако как его отстоять? Трудно представить себе, чтобы во Вселенной возникла и развилась геометрия, будь Вселенная одномерной или даже дискретной. Может показаться, что с целыми числами мы чувствуем себя увереннее и что счет – это и в самом деле нечто существующее изначально. Однако представим себе, что разумом наделено не человечество, а какая-нибудь огромная одинокая медуза в глубинах Тихого океана. Все ее сенсорные данные определялись бы движением, температурой и давлением. Поскольку все это – чистейший континуум, в такой обстановке не может появиться ничего дискретного, и медузе нечего было бы считать.

      Поэтому Атья считает, что «человек создал (курсив мой. – М. Л.) математику посредством идеализации и абстрагирования элементов физического мира». Той же точки зрения придерживаются и ингвист Джордж Лакофф и психолог Рафаэль Нуньес. В своей книге «Откуда взялась математика» («Where Mathematics Comes From») они приходят к такому выводу: «Математика – естественная составляющая человеческого бытия. Она возникает из нашего тела, нашего мозга, нашего повседневного опыта взаимодействия с миром» (Lakoff and Núñez 2000).

      Точка зрения Атья, Лакоффа и Нуньеса затрагивает еще один интересный вопрос. Если математика – это целиком и полностью человеческое изобретение, универсальна ли она? Иначе говоря, если существуют внеземные цивилизации, будет ли их математика такой же, как наша? Карл Саган (1934–1996) полагал, что ответ на последний вопрос утвердительный. В своей книге «Космос» Саган, в частности, размышлял о том, какого рода сигналы передавала бы в космос разумная цивилизация, и писал: «Крайне маловероятно, чтобы какой-нибудь естественный физический процесс генерировал радиосообщение, содержащее только простые числа. Получив подобное сообщение, мы можем заключить, что где-то есть цивилизация, которая любит простые числа (пер. А. Сергеева)». Но можно ли утверждать это с уверенностью? Недавно физик и математик Стивен Вольфрам в своей

Скачать книгу