Дискретная математика. Краткий курс. Учебное пособие. Александр Анатольевич Казанский

Чтение книги онлайн.

Читать онлайн книгу Дискретная математика. Краткий курс. Учебное пособие - Александр Анатольевич Казанский страница 13

Дискретная математика. Краткий курс. Учебное пособие - Александр Анатольевич Казанский

Скачать книгу

style="font-size:15px;">      Е = (АВС) ∩ (ССС) ∪ (ВС ∩ СС) ∪ (АВС) = (АВС ∩ С) ∪ (АВС ∩ СС) ∪ (ВС ∩ СС) ∪ (АВС).

      Шаг 2. Поскольку в Е имеется произведение ВС ∩ СС, которое не содержит переменной А, то снова переходим к шагу 1 и образуем произведение (ВС ∩ СС) ∩ (ААС),

      Е = (АВС ∩ С) ∪ (АВС ∩ СС) ∪ (ВС ∩ СС) ∩ (ААС) ∪ ∪ (АВС).

      После раскрытия скобок в Е образуется два одинаковых фундаментальных произведения АВС ∩ СС. Одно из них необходимо удалить. Теперь Е представлено в полной нормальной форме:

      Е = (АВС ∩ С) ∪ (АВС ∩ СС) ∪ (АС ∩ ВС ∩ СС) ∪ (А ∩ ∩ ВС).

      Таким образом, если имеется выражение, представленное в нормальной форме, то данный алгоритм позволяет алгебраическими преобразованиями привести его к полной нормальной форме. Однако этот способ не единственный. Для этой же цели можно также использовать и диаграммы Венна.

      Рассмотрим пример. Пусть имеется разбиение множества U, показанное на рис. 1.10. Выделим множество, которое задается формулой (нормальной формой объединения пересечений) А ∪ (ВС ∩ С). Она задает объединение двух множеств: А = {4, 5, 6, 7} и множества, представляющего собой пересечение множеств ВС и С, т. е. множества ВС ∩ С = {1, 5}. Поэтому множество А ∪ (ВС ∩ С) = {1, 4, 5, 6, 7}. На рис. 1.12 это множество заштриховано. Из диаграммы видно, что множество А ∪ (ВС ∩ С) задается объединением пяти фундаментальных произведений: множеству {4} соответствует фундаментальное произведение АВС ∩ СС, множеству {6} – АВСС, множеству {7} – АВС, множеству {5} – А ∩ ВC ∩ С и множеству {1} – АC ∩ ВС ∩ С. Объединение этих фундаментальных произведений и дает полную нормальную форму

      (АВС ∩ СС) ∪ (АВСС) ∪ (АВС) ∪ (АВС ∩ ∩ С) ∪ (АС ∩ ВС ∩ С).

      Рис. 1.12

      Заметим, что для любого множества существует не только единственная полная нормальная форма объединения пересечений, но и единственная полная нормальная форма пресечения объединений. Эту форму также можно найти двумя способами. Так, для множества из предыдущего примера А ∪ (ВС ∩ С) раскроем скобки и получим выражение в нормальной форме пересечения объединений (АВС) ∩ (АС). В первой скобке нет переменной С, а во второй переменной В. Поскольку выражение (ССС) = Ø, то следующее выражение эквивалентно исходному

      ((АВС) ∪ (ССС)) ∩ ((АС) ∪ (ВВС)) = (АВС ∪ С) ∩ (АВС ∪ СС) ∩ (АВС) ∩ (АВС ∪ С) = (АВС ∪ С) ∩ (АВС ∪ СС) ∩ (АВС).

      Последнее выражение и будет полной нормальной формой пересечения объединений для исходной формулы.

      Найти данное выражение можно также и при помощи диаграммы Венна. Поскольку в исходное множество {1, 4, 5, 6, 7} не вошли элементы {0, 2, 3 }, то необходимо образовать пересечение таких объединений, которые не содержат эти три множества. Объединение АВС не содержит

Скачать книгу