Магия математики: Как найти x и зачем это нужно. Артур Бенджамин

Чтение книги онлайн.

Читать онлайн книгу Магия математики: Как найти x и зачем это нужно - Артур Бенджамин страница 8

Магия математики: Как найти x и зачем это нужно - Артур Бенджамин

Скачать книгу

цифр. Знаете почему? Минимальный возможный пример – 100 × 100 = 10 000 (здесь пять цифр). Максимальный – 999 × 999, результат которого однозначно будет меньше семизначного 1000 × 1000 = 1 000 000 (пусть и ненамного). Но раз 999 × 999 меньше, значит, в ответе будет шесть цифр (давайте, кстати, вспомним, насколько легко это посчитать: 9992 = (1000 × 998) + 12 = 998 001.) Вот и вывод: результатом перемножения двух трехзначных чисел будет пяти- или шестизначное число.

      Ответ на вопрос (б) – из восьми или девяти цифр. Почему? Наименьшее четырехзначное число – 1000, которое можно представить в виде 10³ (единица с тремя нолями). Наименьшее пятизначное число – 10 000, равное 104. Следовательно, наименьшим произведением 10³ и 104 будет 107 – единица с семью нолями, восьмизначное число. (Откуда взялось 107? Смотрите: 10³ × 104 = (10 × 10 × 10) × (10 × 10 × 10 × 10) = 107.) Ну а наименьшим произведением будет число, лишь ненамного меньшее десятизначного 104 × 105 = 109, то есть девятизначное.

      Такая логика приводит нас к простому правилу: умножение m-значного числа на n-значное даст число, в котором m + n или m + n – 1 знаков.

      Конкретное количество цифр в ответе легче всего определить, взглянув на начальные (крайние левые) цифры перемножаемых чисел. Если их произведение больше или равно 10, тогда в ответе будет m + n цифр (например, в 271 × 828 произведение крайних левых цифр – 2 × 8 = 16 – больше десятки, поэтому ответом будет шестизначное число). Если произведение крайних левых цифр меньше или равно 4, тогда в ответе будет m + n – 1 цифр (например, 314 × 159 будет иметь пятизначный ответ). Ну а на случаи, в которых произведение крайних левых цифр будет равняться 5, 6, 7, 8 или 9, нам придется посмотреть чуть более внимательно. Например, произведение 222 и 444 – пятизначное, а вот 234 и 456 – шестизначное. Но куда важнее то, что оба ответа очень близки к 100 000.

      В результате у нас получается еще более простое правило, уже в отношении деления: деление m-значного числа на n-значное даст число, в котором m – n или m – n + 1 знаков.

      То есть девятизначное число, разделенное на пятизначное, даст нам четырех- или пятизначный результат. Правило определения более конкретного ответа здесь еще проще, чем в случае с умножением. Крайние левые цифры не нужно ни умножать, ни делить – достаточно их просто сравнить. Если крайняя левая цифра делимого меньше крайней левой цифры делителя, в частном будет меньшее количество цифр (m – n). Если же крайняя левая цифра делимого больше крайней левой цифры делителя, в частном будет больше (m – n + 1) цифр. Если же цифры обоих чисел одинаковые, смотрим на следующие после них цифры и применяем то же правило. Например, в результате деления 314 159 265 на 12 358 мы получим пятизначное число, а на 62 831 – четырехзначное. Деление 161 803 398 на 14 142 даст пятизначный ответ, потому что 16 больше 14.

      Рассказывать в подробностях про процесс деления в уме я здесь не буду: он мало чем отличается от деления в столбик на бумаге (но каким бы методом вы ни воспользовались, считать нужно слева направо). Но есть парочка уловок, которые значительно облегчат вам жизнь.

      Скажем,

Скачать книгу