Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II. А. А. Астахов

Чтение книги онлайн.

Читать онлайн книгу Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - А. А. Астахов страница 9

Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - А. А. Астахов

Скачать книгу

что ускорение по преодолению девиации, образующейся в достаточно малом интервале времени в некотором приближении соответствует реальному ускорению криволинейного движения, по крайней мере, по абсолютной величине.

      В общем случае криволинейного движения девиация в заданном интервале времени представляет собой отклонение прямолинейной траектории, которая пройдена с учетом постоянной скорости, достигнутой на момент начала образования девиации от реальной траектории, по которой тело движется с той же начальной скоростью, но с учетом реального ускорения в дальнейшем.

      Причем поскольку прямолинейное движение с постоянной скоростью, равной начальной скорости образования девиации осуществляется по одной касательной к абсолютной траектории, то в общем случае отклонение прямолинейного движения однозначно определяется по отношению к единственно возможной траектории абсолютного движения. В поворотном движении такой определенности нет, т.к. в любом его сколь угодно малом интервале времени радиальное движение пересекает бесконечное множество окружностей переносного вращения, вдоль которых может быть определена своя текущая мгновенная девиация.

      Однако в начале настоящей главы было показано (см. Рис. 4.1.1), что общее приращение поворотного движения для полного приращения радиуса (∆r), пересекающего бесконечное множество переносных окружностей, вдоль которых может быть определена своя текущая мгновенная девиация, определяется суммой девиаций вдоль всех промежуточных переносных окружностей поворотного движения. Эта сумма определяется дугой окружности со средним радиусом за вычетом её части, пройденной с начальной линейной скоростью в исходной точке поворотного движения.

      На (Рис. 4.1.6) схематично изображена структура девиации поворотного движения в заданном интервале времени. Очевидно, средняя девиация поворотного движения эквивалентна дуге окружности (ЖЗ) со средним радиусом переносного вращения (Rср) за вычетом дуги (БГ), соответствующей линейному поступательному перемещению за счёт начальной линейной скорости переносного вращения (VлБ).

      Элементарные окружные участки переносного вращения реальной траектории с радиусами большими среднего радиуса (Rср) больше соответствующих им участков дуги (ЖЗ), в то время как элементарные окружные участки с меньшими радиусами, меньше соответствующих участков дуги (ЖЗ). Однако в силу прямой пропорциональности величины радиуса и длины окружности общая сумма окружных участков вдоль кривой (БС) равна длине дуги (ЖЗ).

      Рис. 4.1.6

      С учётом изложенного определим линейное ускорение, эквивалентное ускорению Кориолиса (ак) через девиацию поворотного движения. При этом, поскольку в рассматриваемом случае дуга (ЖЗ), кроме девиации поворотного движения включает в себя отрезок, пройденный с начальной линейной скоростью (Vлб), применим формулу равноускоренного движения для пути

Скачать книгу