Practical Education, Volume II. Edgeworth Maria

Чтение книги онлайн.

Читать онлайн книгу Practical Education, Volume II - Edgeworth Maria страница 10

Practical Education, Volume II - Edgeworth Maria

Скачать книгу

more especially a child who is familiarly acquainted with the component parts of the names six and four: he sees that the sum 46 is less than the sum 94, and he knows that the lesser sum may be subtracted from the greater; but he does not perceive the means of separating them figure by figure. Tell him, that though six cannot be deducted from four, yet it can from fourteen, and that if one of the tens which are contained in the (9) ninety in the uppermost row of the second column, be supposed to be taken away, or borrowed, from the ninety, and added to the four, the nine will be reduced to 8 (eighty), and the four will become fourteen. Our pupil will comprehend this most readily; he will see that 6, which could not be subtracted from 4, may be subtracted from fourteen, and he will remember that the 9 in the next column is to be considered as only (8). To avoid confusion, he may draw a stroke across the (9) and write 8 over18 it [8 over (9)] and proceed to the remainder of the operation. This method for beginners is certainly very distinct, and may for some time, be employed with advantage; and after its rationale has become familiar, we may explain the common method which depends upon this consideration.

      "If one number is to be deducted from another, the remainder will be the same, whether we add any given number to the smaller number, or take away the same given number from the larger." For instance:

      Now in the common method of subtraction, the one which is borrowed is taken from the uppermost figure in the adjoining column, and instead of altering that figure to one less, we add one to the lowest figure, which, as we have just shown, will have the same effect. The terms, however, that are commonly used in performing this operation, are improper. To say "one that I borrowed, and four" (meaning the lowest figure in the adjoining column) implies the idea that what was borrowed is now to be repaid to that lowest figure, which is not the fact. As to multiplication, we have little to say. Our pupil should be furnished, in the first instance, with a table containing the addition of the different units, which form the different products of the multiplication table: these he should, from time to time, add up as an exercise in addition; and it should be frequently pointed out to him, that adding these figures so many times over, is the same as multiplying them by the number of times that they are added; as three times 3 means 3 added three times. Here one of the figures represents a quantity, the other does not represent a quantity, it denotes nothing but the times, or frequency of repetition. Young people, as they advance, are apt to confound these signs, and to imagine, for instance, in the rule of three, &c. that the sums which they multiply together, mean quantities; that 40 yards of linen may be multiplied by three and six-pence, &c. – an idea from which the misstatements in sums that are intricate, frequently arise.

      We have heard that the multiplication table has been set, like the Chapter of Kings, to a cheerful tune. This is a species of technical memory which we have long practised, and which can do no harm to the understanding; it prevents the mind from no beneficial exertion, and may save much irksome labour. It is certainly to be wished, that our pupil should be expert in the multiplication table; if the cubes which we have formerly mentioned, be employed for this purpose, the notion of squaring figures will be introduced at the same time that the multiplication table is committed to memory.

      In division, what is called the Italian method of arranging the divisor and quotient, appears to be preferable to the common one, as it places them in such a manner as to be easily multiplied by each other, and as it agrees with algebraic notation.

      The usual method is this:

      Italian method:

      The rule of three is commonly taught in a manner merely technical: that it may be learned in this manner, so as to answer the common purposes of life, there can be no doubt; and nothing is further from our design, than to depreciate any mode of instruction which has been sanctioned by experience: but our purpose is to point out methods of conveying instruction that shall improve the reasoning faculty, and habituate our pupil to think upon every subject. We wish, therefore, to point out the course which the mind would follow to solve problems relative to proportion without the rule, and to turn our pupil's attention to the circumstances in which the rule assists us.

      The calculation of the price of any commodity, or the measure of any quantity, where the first term is one, may be always stated as a sum in the rule of three; but as this statement retards, instead of expediting the operation, it is never practised.

      If one yard costs a shilling, how much will three yards cost?

      The mind immediately perceives, that the price added three times together, or multiplied by three, gives the answer. If a certain number of apples are to be equally distributed amongst a certain number of boys, if the share of one is one apple, the share of ten or twenty is plainly equal to ten or twenty. But if we state that the share of three boys is twelve apples, and ask what number will be sufficient for nine boys, the answer is not obvious; it requires consideration. Ask our pupil what made it so easy to answer the last question, he will readily say, "Because I knew what was the share of one."

      Then you could answer this new question if you knew the share of one boy?

      Yes.

      Cannot you find out what the share of one boy is when the share of three boys is twelve?

      Four.

      What number of apples then will be enough, at the same rate, for nine boys?

      Nine times four, that is thirty-six.

      In this process he does nothing more than divide the second number by the first, and multiply the quotient by the third; 12 divided by 3 is 4, which multiplied by 9 is 36. And this is, in truth, the foundation of the rule; for though the golden rule facilitates calculation, and contributes admirably to our convenience, it is not absolutely necessary to the solution of questions relating to proportion.

      Again, "If the share of three boys is five apples, how many will be sufficient for nine?"

      Our pupil will attempt to proceed as in the former question, and will begin by endeavouring to find out the share of one of the three boys; but this is not quite so easy; he will see that each is to have one apple, and part of another; but it will cost him some pains to determine exactly how much. When at length he finds that one and two-thirds is the share of one boy, before he can answer the question, he must multiply one and two-thirds by nine, which is an operation in fractions, a rule of which he at present knows nothing. But if he begins by multiplying the second, instead of dividing it previously by the first number, he will avoid the embarrassment occasioned by fractional parts, and will easily solve the question.

      which product 45, divided by 3, gives 15.

      Here our pupil perceives, that if a given number, 12, for instance, is to be divided by one number, and multiplied by another, it will come to the same thing, whether he begins by dividing the given number, or by multiplying it.

      12 divided by 4 is 3, which

      multiplied by 6 is 18;

      And

      12 multiplied by 6 is 72, which

      divided by 4 is 18.

      We recommend it to preceptors not to fatigue the memories of their young pupils with sums which are difficult only from the number of figures which they require, but rather to give examples in practice, where

Скачать книгу


<p>18</p>

This method is recommended in the Cours de Math, par Camus, p. 38.