Айтрекинг в психологической науке и практике. Коллектив авторов
Чтение книги онлайн.
Читать онлайн книгу Айтрекинг в психологической науке и практике - Коллектив авторов страница 30
– формируется матрица оценок вероятностей переходов, состоящая из элементов полученной на предыдущем шаге матрицы абсолютных частот переходов, поделенных на сумму всех ее элементов.
Расчет элементов матрицы представления преемника более сложен для понимания, однако, так же легко реализуется программно:
– инициализируется (заполняется нулями) квадратная матрица М, чьи размерности соответствуют количеству областей интереса;
– по очереди перебираются элементы последовательности посещенных областей интереса (исключая последнюю) – фиксируется текущий элемент последовательности (номер посещенной зоны, обозначаемый как О и последующий элемент (номер зоны, в которую совершен переход, обозначаемый как;'), a i-я строка матрицы М обновляется по следующему правилу:
где I – единичная матрица того же порядка, что и М, а – параметр скорости обучения, (0<а<1), у – временной весовой коэффициент, (0<у<1).
Таким образом, при наблюдении перемещения из области интереса i в область; набор ожидаемых преемников для «отправителя» i (строка Мi) обновляется так, чтобы учесть переход в «преемника» j, а также в предполагаемые (с учетом предыстории процесса) преемники посещаемой области; (столбец М), но с уменьшенным влиянием на результат (для этого производится умножение на понижающий временной коэффициент у). В итоге мы учитываем не только сам факт перемещения из области i в область l, но и предысторию перемещения из области j в другие области.
Оценка SR-матрицы, построенная по заданной последовательности посещенных областей интереса, содержит сумму взвешенных по удаленности во времени будущих попаданий в некоторую область интереса, определяемую заданным столбцом при условии, что в данный момент посещена область, определяемая строкой. Заметим, что получаемая матрица не является стохастической (т. е. ее элементы не представляют собой оценки вероятностей). Поэтому сумма всех значений столбца SR-матрицы может превышать единицу. Для корректного сопоставления SR-матриц, полученных для записей различной длительности, необходимо эти матрицы нормировать (делить каждый элемент на сумму элементов матрицы). Однако нормирование может и не проводиться, если исследователя интересует, в частности, вариация длительностей траекторий взора.
Стоит заметить, что относительно недавно была продемонстрирована формальная связь концепции представления преемника и модели эпизодической и семантической памяти (Howard, Kahana, 2002; Sederberg et al, 2008).
Важным отличием между матрицей представления преемника и матрицей вероятностей переходов является то, что последняя отражает закономерности только первого порядка (касающиеся переходов между смежными элементами последовательности), в то время как первая настраивается для предсказания будущих посещений в рамках