Popular Lectures on Zoonomia. Garnett Thomas

Чтение книги онлайн.

Читать онлайн книгу Popular Lectures on Zoonomia - Garnett Thomas страница 10

Автор:
Жанр:
Серия:
Издательство:
Popular Lectures on Zoonomia - Garnett Thomas

Скачать книгу

the human body, notwithstanding which, a thermometer put in the mouth points to 96 degrees or 97 degrees. The inhabitants of the hot regions of Surinam support, without inconvenience, the heat of their climate. We are assured that in Senegal, about the latitude of 17 degrees, the thermometer in the shade generally stands at 108 degrees, without any fatal effects to men or animals. The Russians often live in places heated by stoves to 108 degrees or 109 degrees, and some philosophers in this country, by way of experiment, remained a considerable time in a room heated above the boiling point of water.

      On the other hand, an equal excess of cold seems to have no greater effect in altering the degree of heat proper to animal bodies. Delisle has observed a cold in Siberia 70 degrees below the zero of Fahrenheit's scale, notwithstanding which animals lived. Gmelin has seen the inhabitants of Jeniseisk under the 58th degree of northern latitude, sustaining a degree of cold, which in January became so severe, that the spirit in the thermometer was 126 degrees below the freezing point. Professor Pallas in Siberia, and our countrymen at Hudson's Bay, have experienced a degree of cold almost equal to this. All these facts tend to prove, that the heat of animals continues without alteration in very different temperatures. Hence it is evident that they must be able to produce a greater degree of heat, when surrounded by a cold medium; and on the contrary, that they must effect a diminution of the heat, when the surrounding medium is very hot.

      All these circumstances may be accounted for, by the principles we have laid down; the decomposition of oxygen in the lungs.

      There have not been wanting, however, some very eminent physiologists, who have contended that animal heat is produced chiefly by the nerves. They have brought forward in proof of this the well known fact, that when the spinal marrow is injured, the temperature of the body generally becomes diminished; and that in a paralytic limb the heat is less than ordinary, though the strength and velocity of the pulse remain the same. These facts, and others of a similar nature, have induced them to believe, that the nervous system is the chief cause and essential organ of heat; and they have adduced similar arguments, to prove that nutrition is performed by the nerves, for a limb which is paralytic from an injury of the nerves, wastes, though the circulation continues. The truth is, that the nerves exert their influence upon these, and all other functions of the body, and modify their action. The liver secretes bile, but if the nerves leading to it be destroyed, the secretion of bile will cease; but who will say, that the bile is secreted by the nerves? The nitric acid will dissolve metals, and this solution will go on more quickly if heat be applied; but surely the nitric acid is the solvent, the heat being only an aiding cause.

      But though the human body has been so wisely constructed, as to bear, without inconvenience, a considerable variation of temperature; yet this latitude has its limits, which depend upon the capability of extricating heat from the atmosphere. There must be a limit below which the diminution of heat takes place faster than its production. If this be continued, or increased, the heat of the animal must diminish, the functions lose their energy, and an insuperable inclination to sleep is felt, in which if the sufferer indulge, he will be sure to wake no more.

      This is confirmed by what happened to Sir Joseph Banks and his party on the heights of Terra del Fuego. Dr. Solander, who had more than once crossed the mountains which divide Sweden from Norway, well knew that extreme cold produces an irresistible torpor and sleepiness, he therefore conjured the company to keep always in motion, whatever exertion it might require, and however great might be their inclination to rest. Whoever sits down, says he, will sleep; and whoever sleeps will wake no more. Thus, at once admonished and alarmed, they set forward; but, while they were still upon the naked rocks, the cold was so intense, as to produce the effects which had been so much dreaded. Dr. Solander himself was the first who found the inclination against which he had warned others, irresistible; and insisted on being suffered to lie down. Sir Joseph entreated and remonstrated in vain; he lay down upon the ground, though it was covered with snow; and it was with great difficulty that his friend kept him from sleeping. One of his black servants also began to linger, having suffered from the cold in the same manner as the Doctor. Partly by persuasion, and partly by force, they were got forwards; soon however they both declared that they would go no further. Sir Joseph had recourse again to entreaty and expostulation, but these produced no effect: when the black was told, that if he did not go on, he would shortly be frozen to death; he answered, that he desired nothing so much as to lie down and die. The Doctor did not so explicitly renounce his life, but said, he would go on, if they would first allow him to take some sleep, though he had before told them, that to sleep was to perish. They both in a few minutes fell into a profound sleep, and after five minutes Sir Joseph Banks happily succeeded in waking Dr. Solander, who had almost lost the use of his limbs; the muscles were so shrunk, that his shoes fell from his feet; but every attempt to recal the unfortunate black to life proved unsuccessful.

      As the circulation of the blood is the means by which the heat produced is conveyed to all parts of the body; and as it is a function of the highest importance, I shall, in the next lecture, proceed to the consideration of it.

      LECTURE III. CIRCULATION OF THE BLOOD

      Two kinds of motion may be distinguished in the animal economy; the one voluntary, or under the command of the will, which takes place at certain intervals, but may be stopped at pleasure. The other kind of motion is called involuntary, as not depending on the will, but going on constantly, without interruption, both when we sleep and when we wake.

      Of the first kind is the motion of the limbs, of which I have already spoken in general terms; the object of which is, to change the situation of the animal, and carry it where the will directs.

      Among the involuntary motions, the most remarkable is the circulation of the blood, which I shall proceed to consider in this lecture.

      There is one motion, however, which claims a middle place between the voluntary and involuntary; I mean respiration. This action is so far under the command of the will, that it may be suspended, increased, or diminished in strength and frequency: but we can only suspend it for a very short time; and it goes on regularly during sleep, and in general, even when we are awake, without the intervention of the will; its continuation being always necessary, as we have already seen, to support life.

      The motion of the fluids in the living body is regulated by very different laws, from those which govern the motion of ordinary fluids, that depend upon their gravity and fluidity: these last have a general centre of gravitation to which they incessantly tend. Their motion is from above downwards, when not prevented by any obstacles; and when they meet with obstruction, they either stop till the obstacle is removed, or escape where they find the least resistance. When they have reached the lowest situations, they remain at rest, unless acted upon by some internal impulse, which again puts them in motion.

      But the motion of the fluids in an animal body, is less uniform, constant, and regular; it takes place upwards as well as downwards, and overcomes numerous obstacles; it carries the blood from the interior parts of the body to the surface, and from the surface back again to the internal parts; it forces it from the left side of the body to the right, and with such rapidity that not a particle of the fluid remains an instant in the same place.

      The principal organ concerned in the circulation of the blood, is the heart; which is a hollow muscle, of a conical figure, with two cavities, called ventricles; this organ is situated in the thorax or chest; its apex or point is inclined downwards and to the left side, where it is received in a cavity of the left lobe of the lungs.

      At the basis of the heart on each side are situated two cavities, called auricles, to receive the blood; and these contracting, force the blood into the ventricles, which are two cavities in the heart, separated from each other by a strong muscular partition. The cavity which is situated on the right side of the heart, is called the right ventricle, and that on the left the left ventricle. From the right ventricle of the heart issues a large artery, called the pulmonary artery, which goes to the lungs, and is there divided and subdivided into a vast number of branches, the extremities of which are too small to be visible.

Скачать книгу