Building Information Modeling For Dummies. Swaddle Paul

Чтение книги онлайн.

Читать онлайн книгу Building Information Modeling For Dummies - Swaddle Paul страница 4

Building Information Modeling For Dummies - Swaddle Paul

Скачать книгу

in the 1980s, in a paper that predicted that model objects would connect to relational databases full of different kinds of information. And long before that, college research teams were developing computer modeling techniques with buildings in mind. Even just on the graphical side, university research has had a significant impact on modeling advances.

      Software companies have been developing tools for built environment professionals to design, plan, render, and analyze buildings and structures for decades. Although most have focused on 3D geometric modeling systems, the largest platforms have been exploring how to make the most of data science and the properties of building products too. The first use of the term BIM to describe all this goes back as far as the 1990s. The awareness, investment, and supporting documentation have all increased dramatically in the past few years, though.

      For more information on the history and theories of BIM, we suggest that you check out some great books by the fathers and godfathers of BIM such as The BIM Handbook by Chuck Eastman, Paul Teicholz, Rafael Sacks, and Kathleen Liston (John Wiley & Sons, Inc.) and Building Information Modeling: BIM in Current and Future Practice by Karen Kensek and Douglas Noble (John Wiley & Sons, Inc.).

      Considering BIM Plans and Strategies

      Having a clear plan and strategy is essential to the success or failure of your BIM journey. You’ll need an overall strategy for encouraging BIM in your office or on-site. Use the BIM protocols and frameworks to refine and improve your processes and quality assurance, and develop individual BIM execution plans for particular projects.

      So that BIM processes have the best possible chance of becoming everyday practice, you want to make a start with your current team and your next project. In Chapter 13, we show you what having a BIM strategy really means and what benefits you can expect from new methods of working. To help you do this, we also present a couple examples of different BIM strategies:

      ✔ BIM in the UK: You can use the UK’s suite of BIM documents in combination with your preferred tools and supporting platforms to achieve BIM Level 2 and what it’s going to take to progress to Level 3.

      ✔ BIM in the United States: In the United States the same clarity of a national approach doesn’t exist, but we direct you to a number of useful protocols and guidelines from certain states and BIM organizations, so that you can begin to build an efficient set of BIM processes and workflows.

      

Like everything in life, BIM also has some associated risks that you need to be able to identify. Some of those risks include

      ✔ Digital security: Sensitive information about the operation of assets

      ✔ Intellectual property misuse: Answering who owns the property

      ✔ Risk and liability: Recognizing who is responsible if something goes wrong

      Chapter 14 discusses these challenges, what you can do to avoid them, and how to handle them quickly if you should encounter them.

      Measuring the Real-World Benefits of BIM

      Say that you’ve won over some key decision makers in your organization and they need you to produce a business case for BIM. As part of your business case, you need to justify the capital outlay, which relates to the money your organization spends to implement BIM. You also must consider upheaval that will come from new technology, new team structures, and even new staff. Not only that, but you probably have to demonstrate return on investment (ROI) as quickly as possible.

      Your boss is going to want to know how much BIM is going to cost. BIM needs to generate savings and efficiencies that make it worthwhile. In Chapter 15, we pass on some solid examples of BIM benefits that aren’t just aims for the future but exist in the real world today, including the following:

      ✔ Better information: Because you’re going to be working with digital data and methodologies in the office or on the job site, the accuracy and currency of your information will improve, including precise quantity takeoff and the ability to set the site out such as the asset’s position, levels, and alignment from the model.

      Not only that, digital information also allows you to test and validate the data far more quickly than with traditional processes. As the model evolves, instant awareness of the impact of changes at any point in the project leads to better assessment and rapid decision-making.

      ✔ Data exchange across the project timeline: BIM can help you to avoid data loss over the course of a project. At many points of information exchange, you can use project data more collaboratively with little waste or duplicated effort.

      What’s even more important is that multiple roles and disciplines can use the same data on the project, including cooperative working with the supply chain and project participants further down the timeline, like facilities management and operations teams.

      ✔ Communication: BIM is your best chance to give your clients the built asset that they actually want and to output the deliverables that meet their own objectives, from slick visualizations to high-quality carbon data. Through a combination of 3D and nongraphic data, you can understand more about the built environment than ever before. Even better, you can also test out ideas in the safety of the model.

      ✔ New efficiency: The potential accuracy of BIM and the chance to refine engineering long before ground is broken on-site means that projects can begin to exploit new concepts like off-site manufacturing (OSM) where manufactures can deliver pre-built construction elements to site.

      ✔ Carbon saving: You can calculate statements about energy use and embodied carbon with new levels of detail. By running simulations and testing lifecycle concepts in the model environment as early as design and pre-construction stages, you can be more confident about the future performance of your asset. You can also have greater certainty over the project program and the likely issues that could arise.

      ✔ Health and safety: By improving information at the front end of BIM (including getting contractors and subcontractors on-board early), you can understand areas of risk in the project, especially where dangerous activities will take place, and achieve high levels of safety during later phases of the project. Throughout this book you can find examples of construction and site delivery of BIM, not just office-based BIM for designers. Chapter 16 specifically looks at some of BIM’s impact on construction, especially the potential for BIM to improve health and safety on-site.

      As well as including all the information about BIM’s effect on projects today, we take a good opportunity to understand the future of the industry and where new technology like augmented reality (AR) could take BIM and digital construction in Chapters 18 to 20.

      The construction industry is finally being disrupted by innovation and new business methods. It won’t be long before the buildings and projects you’re working on are more connected than ever. You may have heard the term smart cities, and BIM is one of the main generators of the embedded digital information required to achieve the connected globe. Through the addition of more smart building sensors, and what’s called the Internet of Things, your understanding of how people really use the built environment (and your own projects) will improve beyond anything you could have previously imagined.

Скачать книгу