Building Information Modeling For Dummies. Swaddle Paul
Чтение книги онлайн.
Читать онлайн книгу Building Information Modeling For Dummies - Swaddle Paul страница 8
✔ Multiple design options: BIM lets you build digitally before you ever have to try things on-site. This opens up lots of possibilities, so you can test your ideas and work through many structural, engineering, and design concepts. The benefit of BIM is being able to interrogate these concepts in terms of their cost or complexity by using intelligent BIM objects. Then the entire project team can review the design at regular stages.
✔ Energy analysis: The construction industry is gradually becoming more sustainable, aiming to reduce energy use and waste on projects. BIM during design phases allows you to understand the impact of design decisions on energy use, overheating, and air circulation through energy analysis tools.
BIM has many benefits during the construction phase of built projects. BIM can be used to schedule and plan out the construction process, including the movement of vehicles and plant machinery. The design decisions made in the model and increased precision of measurement should result in less wastage and higher accuracy during installation, along with the ability to explain difficult construction details.
Using the model as a communication method improves project teams’ ability to collaborate and coordinate the work being done on-site. The model can also be used to calculate and manage the cost and time constraints of the project. In the long term, BIM will move toward automating the process of code approvals and building regulations too.
BIM can reduce costs during the operation phase of buildings, because the model forms an as-built record of all the systems constructed and installed. If the model is kept up to date, then BIM becomes an ongoing process to track maintenance, issues, and changes through the life of an asset. You can alert operational teams when systems are about to fail, pass their warranty date, or when they require maintenance or replacement according to a pre-written schedule.
As built assets become more automated and require more advanced building management systems, the BIM process will become fully integrated with these systems. You’ll be able to optimize heating, ventilation, and lighting systems based on the real-time use of spaces.
BIM can dramatically change many industries, and it needs a combination of people, processes, and platforms with data at the centre. Instead of the traditional industry resulting in one built asset, BIM will provide two, a physical and a digital one. Make sure that both are well designed and constructed securely using best practices, and that they’re easy to understand and maintain during their use.
Chapter 3
Examining the Information Part of BIM
In This Chapter
▶ Focusing on the “I” in BIM
▶ Establishing who’s going to add and edit information, extract and use model outputs, and keep everything updated
▶ Interrogating the data in the Building Information Model
▶ Collaborating with information
The projects you work on are packed full of data, from costs and quantities to certificates and standards. Every component of a built environment project, whether it’s a building, bridge, tunnel, or airport, is accompanied by a wealth of associated performance measurements, values, and facts. Somehow you need to manage and maintain this information as the project evolves. Information management is a huge task and traditional methods can be very inefficient.
Chapter 1 includes our definition of Building Information Modeling (BIM), simplifying many of the alternative (complicated) explanations you may have heard into a clear, concise sentence you can easily remember. The most important thing to realize is that BIM isn’t just a technology, and it isn’t just about engineering geometry or fancy visualizations. You need to be able to understand the project beyond how the components fit together and how it will look when built. In this chapter, we take a tour of the information aspect of BIM and show why it’s literally at the heart of the term BIM.
Comprehending What Information Means
People often describe BIM as a data revolution. “Why?” you may ask. People hype BIM to be many things and have wide-ranging impacts, but fundamentally it’s a decision by a project team to change the way you share information, cooperate, and collaborate on projects. It creates value by demonstrating that you can work in more efficient ways. The most significant change is in how the project team manages information across the life of a project.
You can explain the idea of the “I” in BIM as information modeling to someone by using the example of a human body. If you wanted to, you could accurately replicate the geometry of the entire human body, so that you had a perfect 3D model of human anatomy (and these models do exist as study tools for medical professionals). However, so much information is missing from the model that represents a real person, including age, medical history, family history, occupation, lifestyle, and daily routine. In the same way, a perfect 3D representation of a project is still missing so much information, such as the execution of building works, when components were installed and their likely replacement time, warranties and certificates, estimated energy performance data, and so on. The geometry is only useful with embedded property data.
For a fascinating crossover of construction BIM and medical anatomy, check out Arup’s Project OVE at http://arupassociates.com/en/exploration/bim-trial-project-ove/.
A lot of industries have applied information modeling and managing information and knowledge across projects. BIM isn’t something architects or contractors invented. In the following sections, you can find out how information modeling is used successfully by other sectors and how you can benefit from the information aspect.
In simple terms, information modeling allows clients, designers, builders, engineers, fabricators, product manufacturers, owner-operators, and users to understand an entire project before construction, refine the proposal to avoid errors, and generate efficiencies. They can then output a digital copy of the built project, interrogate it for key facts in the future, and update or expand it as necessary when things change.
Because of these efficiency benefits, the construction industry isn’t the first to think that information modeling sounds like a smart idea. In fact, some companies have been using the concept of data analysis for decades. The following sections give some great examples of other industries using information modeling innovatively.
By modeling a project digitally in terms of its information as well as its geometry, everyone involved has the opportunity to access, influence, and interact with the same data for different reasons. One of the key aims of BIM is to group all the information about a project into just one virtual place, but doing so is a long-term goal.
To make the most of existing technology, you need to ensure that the information and systems you use are interoperable; in other words, you allow and encourage data exchange and sharing to take place across the team. To help you with this, you can work to international standards available. In Part III, we go into much more depth about the various documents and protocols around the world that direct information coordination.
Automotive manufacturing
The automotive manufacturing