Квантовые вычисления со времен Демокрита. Скотт Ааронсон

Чтение книги онлайн.

Читать онлайн книгу Квантовые вычисления со времен Демокрита - Скотт Ааронсон страница 15

Квантовые вычисления со времен Демокрита - Скотт Ааронсон

Скачать книгу

поставить в строгое соответствие попарно, то есть один к одному. И точка. А если, как бы вы ни пытались распределить элементы по парам, в одном из множеств все равно остаются лишние, значит, то множество, где остаются лишние элементы, большее из двух.

      Какой может быть мощность множества, или, иначе, его кардинальное число? Разумеется, существуют множества конечной мощности, по одному на каждое натуральное число. Затем идет первая бесконечная мощность, мощность множества целых чисел, которую Кантор назвал ℵ0 («алеф-нуль»). Множество рациональных чисел обладает той же мощностью ℵ0; иначе этот факт можно выразить, сказав, что рациональные числа являются счетными – в том смысле, что их можно поставить в попарное соответствие с целыми числами. Иными словами, мы можем составить бесконечный список таким образом, что рано или поздно в нем появится каждое рациональное число.

      Как доказывается, что множество рациональных чисел счетно? Вы никогда не видели этого доказательства? Ну хорошо. Для начала запишем 0 и добавим все рациональные числа, у которых сумма абсолютных значений числителя и знаменателя равна 2. Затем добавляем к списку все рациональные числа, у которых сумма абсолютных значений числителя и знаменателя равно 3. И так далее. Ясно, что любое рациональное число рано или поздно появится в этом списке. Следовательно, их бесконечное количество счетно. Что и требовалось доказать.

      Но самый серьезный вклад Кантора заключался в том, что он показал, что не каждая бесконечность является счетной, – так что, к примеру, бесконечность действительных чисел больше, чем бесконечность целых чисел. В более общем плане: точно так же, как существует бесконечно много чисел, существует и бесконечно много бесконечностей.

      С доказательством этого вы тоже не встречались? Ну хорошо, хорошо. Пусть у вас имеется бесконечное множество A. Мы покажем, как получить другое бесконечное множество B, которое будет больше, чем A. Просто возьмем в качестве множества B множество всех подмножеств A, которое гарантированно существует, согласно аксиоме о степенном множестве. Откуда мы знаем, что B больше, чем A? Ну предположим, что мы смогли каждому элементу a ∈ A поставить во взаимно однозначное соответствие элемент f (a) ∈ B, так что лишних элементов B не осталось. Тогда мы можем определить новое подмножество S ⊆ A, состоящее из всех a, которые не входят в подмножество f (a). Такое S также является элементом B. Но, заметьте, S не может соответствовать никакому a ∈ A, поскольку в противном случае a содержалось бы в f (a) тогда и только тогда, когда оно не содержалось бы в f (a). Получили противоречие. Следовательно, B больше A, и мы получили бесконечность большую, чем та, с которой мы начали.

      Это определенно одно из четырех или пяти величайших доказательств во всей математике – и опять же полезно посмотреть на него хотя бы раз в жизни.

      Помимо кардинальных чисел полезно обсудить также ординальные, или порядковые, числа. Их, вместо того чтобы определять, проще проиллюстрировать. Начнем с натуральных чисел:

0, 1, 2, 3, …

      Затем, говорим

Скачать книгу