Статистика и котики. Владимир Савельев
Чтение книги онлайн.
Читать онлайн книгу Статистика и котики - Владимир Савельев страница 5
Измерим второго котика. Он оказался равен 25 см. Что мы можем сказать о размере третьего? А то, что он перестал быть неизвестным – теперь мы можем его вычислить. И действительно, вычтя из общей суммы размеры первого и второго котика мы получаем размер третьего.
Число степеней свободы – это то количество котиков, которое мы должны измерить, чтобы однозначно узнать размер всех котиков при известном среднем или дисперсии. Если у вас только одна котиковая выборка, то это количество котиков минус единица.
Если к ним добавляются еще и выборка пёсиков (например, при вычислении t-критерия Стьюдента), то общее количество степеней свободы – это просто сумма степеней свободы котиков и пёсиков. Или по-другому – общее количество животных вычесть двойку.
Истоки этого понятия – в самых основах теории вероятности и математической статистики, которые выходят за пределы нашей книги. С практической же точки зрения, знание о степенях свободы нужно при работе с таблицами критических значений и расчёте p-уровня значимости, о которых вы узнаете из следующей главы.
Глава 4. Как понять, что песики отличаются от котиков или p-уровень значимости
Предположим, что вы вычислили t-критерий Стьюдента. Или U-критерий Манна-Уитни. Или какой-нибудь другой. Как же по нему понять, действительно ли песики и котики различаются по размеру? Чтобы это выяснить, статистики используют весьма нетривиальный подход.
Во-первых, они делают предположение, что котики и песики, как биологические, виды абсолютно не отличаются друг от друга. Это предположение называется нулевой гипотезой.
Следующим шагом они вычисляют вероятность того, что две случайно выбранные группы котиков и песиков дадут значение критерия большее или равное тому, которое мы получили (чаще всего без учета его знака). Эта вероятность называется p-уровнем значимости.
Если p-уровень значимости меньше 5 % (чаще записывается как 0,05), то нулевая гипотеза отвергается и принимается гипотеза о том, что котики и песики все-таки различаются. Такая гипотеза называется альтернативной.
Если же p-уровень значимости больше 0,05, то нулевая гипотеза не отвергается.
Однако то, что она не отвергается, еще не значит, что она верна. Это означает только то, что в данном опыте мы не обнаружили значимых различий.
В специальных статистических программах p-уровень значимости вычисляется автоматически, и нам достаточно просто найти его в соответствующей таблице. Однако, если у вас таких программ нет, то вам придется пользоваться таблицами критических значений.
Работать с ними просто: найдите нужную строчку и посмотрите на значение критерия, которое там указано. Если то, что вы получили, превышает это значение, то котики