Большое космическое путешествие. Нил Деграсс Тайсон
Чтение книги онлайн.
Читать онлайн книгу Большое космическое путешествие - Нил Деграсс Тайсон страница 34
При достаточной температуре можно обеспечить, чтобы вся совокупность атомов и некоторая доля их электронов находились в сравнительно высоком состоянии. Можно поддерживать такое равновесие, так, чтобы любой упавший электрон сразу выталкивался на уровень выше. Примерно так действует жонглер, удерживающий несколько мячиков в воздухе. Все это – функция температуры. При низких температурах абсолютное большинство электронов остается на энергетическом уровне n = 1 и лишь немногие электроны – на энергетическом уровне n = 2. По мере повышения температуры все больше электронов выталкивается на энергетический уровень n = 2.
Резюме. Допустим, межзвездное газовое облако подсвечивается сиянием звезды, температура которой составляет 10 000 К. У большинства атомов – множество очень сложных энергетических уровней, таково устройство природы; энергетические уровни водорода при этом сравнительно просты. Эта разнородная смесь совершенно искажает чистый тепловой спектр, излучаемый звездой с температурой 10 000 К. Посмотрим, какой же хаос получается.
Во-первых, рассмотрим полноценный атом водорода. В нем – бесконечное количество энергетических уровней, соответствующих концентрическим орбиталям, расположенным все дальше и дальше от ядра: n = 1 (основное состояние; ближайшая к ядру орбиталь), n = 2 (первый уровень возбуждения), n = 3, n = 4, n = 5, n = 6 … n = ∞. Схема энергетических уровней напоминает лестницу, поэтому называется «лестничная диаграмма». Нижние энергетические уровни, расположенные на которых электроны теснее связаны с ядром, на диаграмме также располагаются внизу (рис. 6.2).
Первое возбужденное состояние водорода – n = 2, на три четверти пути вверх, за ним следует n = 3, затем n = 4, n = 5 и так далее. Электрон с высоким n занимает очень высокую орбиталь и имеет очень слабую связь с протоном. На самом верху диаграммы энергия связи электрона равна нулю. Энергия в атомах измеряется в электрон-вольтах, эВ. Это энергия, требуемая электрону, чтобы преодолеть разность потенциалов в 1 вольт. Допустим, у вас есть фонарик, работающий от девятивольтной батарейки. Каждый электрон, проходя по проводам в фонарике, генерирует 9 эВ энергии в виде света и теплоты. По проводам фонарика может проходить 6,24 × 1018 электронов в секунду, при этом будет генерироваться энергия в 9 × (6,24 × 1018) эВ (или 9 ватт) световой и тепловой энергии в секунду. Следовательно, один электрон-вольт – очень малая энергия; просто такими единицами удобно оперировать, когда речь идет о небольших порциях энергии, обмен которыми происходит при электронных переходах. Например, –13,6 эВ на рисунке соответствует энергетическому уровню n = 1. Эта энергия показана как отрицательная. Чтобы вывести этот электрон из атома, ему нужно сообщить энергию 13,6 эВ. Говорят, что 13,6 эВ – это энергия связывания для основного состояния электрона n = 1. Что будет, если электрон в основном состоянии заметит фотон с энергией более 13,6 эВ? Он сможет поглотить этот фотон?