The Mysterious World of the Human Genome. Frank Ryan

Чтение книги онлайн.

Читать онлайн книгу The Mysterious World of the Human Genome - Frank Ryan страница 6

The Mysterious World of the Human Genome - Frank  Ryan

Скачать книгу

the words capable of spelling out the narratives. Chemists, and through extrapolation geneticists, not unnaturally assumed that only this level of complexity could possibly accommodate the incredible memory template that the complexity of heredity demanded – a line of thought that Judson labelled ‘The Protein Version of the Central Dogma’.

      This was the contentious zeitgeist that Avery now confronted. As early as 1935, in his annual reports to the Board of the Institute, he indicated that he had growing evidence that the ‘transforming substance’ appeared free of capsular polysaccharide and it did not appear to be a protein.

      Further progress on this line of research appeared to drag. In part this was because Dubos, working in the same department, had made a breakthrough in his search for antibiotic drugs. In 1925, Alexander Fleming, at St Mary’s Hospital in London, had discovered a potential antibiotic, penicillin, but he had been unable to take his work to the stage of useful production for medical purposes. Now, working on the philosophical principle encapsulated by the biblical saying ‘dust to dust’, Dubos had pioneered the search for microbes in soil that would potentially attack the polysaccharide coat of the pneumococcus. By the early 1930s he was making progress. From a cranberry bog in New Jersey he found a bacillus that dissolved the thick polysaccharide capsule that coated the pneumococcus with its armour-like outer covering. Dubos went on to extract the enzyme that the Cranberry Bog bacillus produced. He and Avery had reported their discovery in a paper in the journal, Science, in 1930. In a further series of papers the two scientists would report further experiments, all aimed at extrapolating the discovery to human trials of the Cranberry Bog enzyme in treating the potentially fatal pneumonia and meningitis caused by the pneumococcus.

      But their researches encountered difficulty after difficulty. In part these arose from a predictable ignorance in a field of such pioneering research. A more personal, and devastating, problem arose when, under the stress of it all, Avery developed thyrotoxicosis – a debilitating autoimmune illness in which his thyroid gland became overactive.

      Thyrotoxicosis causes the system to be flooded by thyroid hormones, which would have inappropriately switched his metabolism into a dangerous overdrive. He would have felt shaky, agitated, physically and mentally restless, suffering difficulties with relaxation and sleep – an impossible situation for a creative person. Avery had to spend time away from the lab undergoing surgery to remove the bulk of the ‘toxic goitre’, a procedure that carried risk of side-effects, even fatality in a minority of cases. His surgeon advised him against any early activity, physical or mental, that provoked stress. Dubos later recalled how Avery was away from his work for as long as six months. And while Avery was away, the laboratory stagnated. In Dubos’ own words, ‘I … pursued [the research] for three or four years. However I could not carry the work very far because there were serious gaps in both my knowledge of genetics and biochemistry and in the [prevailing] states of these sciences themselves.’

      Dubos would continue his researches against such difficulties, to be rewarded, in 1939, with the discovery of the first soil-derived antibiotic. He called it ‘gramicidin’. But gramicidin could not be taken by mouth or administered by injection because it was too toxic. It could only be applied to skin conditions. The research continued. But then, all of a sudden, the hopes of Avery and Dubos were overtaken by a rival breakthrough. Working in the pharmaceutical research laboratories of the Bayer Company in Elberfeld, Germany, doctor Gerhard Domagk reported the discovery of a new antibacterial agent called prontosil. The first of what would come to be known as the sulphonamide drugs, it immediately entered the medical formulary, pioneering the treatment of a number of hitherto untreatable infectious diseases.

      Today we are apt to forget how little we could do to control infection in the 1930s. Epidemics such as scarlet fever, measles, pneumonia, meningitis and poliomyelitis swept through the population in regular, sometimes annual, cycles. Other notorious infections were everyday threats, including tuberculosis, which ravaged entire families, or boils, septic arthritis, septic osteomyelitis, which caused agonising abscesses in bone, and the commonplace but potentially deadly streptococci capable of breaking through a septic throat to cause abscesses in the brain. Most of the human population, whether in developed or developing countries, died from infections, including the insidious pneumonias that hit those whose immunity was depressed. The treatment of infections was the most urgent problem then facing humanity. For Dubos, and even more so Avery, the disappointment of failing in their line of research would have been shattering.

      When, in due course, Avery returned to work, he switched the emphasis of his research to the ‘transforming substance’. Colin MacLeod improved the techniques of extraction so they could now produce sizeable amounts for assay and further testing. They began to make more rapid progress so that, in a report to the Rockefeller Board for the year 1940–41, they were more confident in stating that even a highly purified extract of the transforming substance appeared to be protein-free.

      That summer MacLeod left the Institute to become Professor of Bacteriology at the New York University School of Medicine. But he still took an interest in the project and frequently returned to the Institute to add his advice. A young paediatrician, Maclyn McCarty, took MacLeod’s place in the transforming experiment. McCarty brought a useful level of biochemical training to the laboratory. And now they had the transforming substance in quantity and in stable form, he applied his chemical skills to further process and identify the active material. He began to culture the pneumococci in large batches of 50 to 75 litres, developing a series of steps that increased the yield of transforming substance while removing proteins, polysaccharides and ribonucleic acid. The prevailing beliefs about the hereditary principle claimed that nucleoproteins were the answer. Thus the topmost priority in all of this effort was to ensure that the final test material contained no protein.

      By now McCarty had extracted concentrated solutions of the active material. He treated this with a series of protein-digesting enzymes, such as the gut-derived trypsin and chymotrypsin, which were known to destroy proteins, ribonucleic acid and pneumococcal capsular polysaccharide. What remained was once more shaken with chloroform in a final effort to remove even the finest traces of protein.

      By late 1942, after repeated extraction and experiment, McCarty had come to the conclusion that the transforming activity was confined to a highly viscous fraction that consisted almost exclusively of polymerised deoxyribonucleic acid. When he precipitated this fraction in a flask by adding absolute ethyl alcohol, drop by drop, all the while stirring the solution with a glass rod, the active material separated out of the solution in the form of long, white and extremely fine fibrous strands that wound themselves around the stirring rod. Dubos would recall the excitement felt within the lab by all those who witnessed the sight of the beautiful fibres, which were the pure form of the transforming substance.

      In early 1943, Avery, MacLeod and McCarty presented their findings to distinguished chemists at the Princeton section of the Rockefeller Institute for Medical Research. The chemists must have been astonished, perhaps even nonplussed, but they offered no contradiction of the evidence nor asked for further proof. The researchers summed up the evidence for the Board of the Rockefeller in April of that year. Avery, MacLeod and McCarty, all three medical doctors rather than geneticists, were now ready to inform the world in a paper submitted to the Journal of Experimental Medicine in November the same year, which would be published early the following year. The title of the paper was long-winded and cautious: ‘Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III’.

      In the words of Dubos, this paper ‘had staggering implications’. The sense of excitement, tempered by caution, was captured in a letter that Avery wrote to his brother, Roy, dated 26 May 1943:

       … For the past two years, first with MacLeod and now with Dr McCarty, I have been trying to find out what is the chemical nature of the substance in the bacterial extracts which induces this specific change … Some job – and full of heartaches and heartbreaks. But at last

Скачать книгу