The Mysterious World of the Human Genome. Frank Ryan
Чтение книги онлайн.
Читать онлайн книгу The Mysterious World of the Human Genome - Frank Ryan страница 9
An incident highlighted just how strong was Avery’s aversion to such formal acknowledgement of his work. Sir Henry Dale, who was President of the Royal Society in England, took it upon himself to bring the Copley Medal to the Rockefeller Institute, there to confer it on the shy and retiring Avery in person. Dale was accompanied by a Dr Todd, who knew Avery personally. The two highly respected English visitors arrived at the Institute in New York unannounced and went directly to Avery’s department in the main hospital building. But when they saw Avery working in his lab, through the ever-open door, they retreated without intruding on his presence.
Dr Todd would later recount how Sir Henry Dale said simply: ‘Now I understand everything.’
Bizarre as this behaviour would appear, it was in keeping with Avery’s increasingly reclusive personality: a man who avoided any of the normal personal contacts outside of immediate family and work colleagues. Genius can be strange. Yet such idiosyncratic behaviour apart, it was this son of an evangelical Baptist preacher who first discovered that DNA was the molecule of heredity. And putting such personal matters aside, the question remains: why was such a fundamental discovery not recognised by the awarding of the Nobel Prize?
In his letters to his brother, Avery retained a modest outlook. Could it be that a combination of Avery’s innate conservatism, his tendency to over-caution, and his downplaying of the implications of his discovery in the paper of 1944 might have contributed to his being overlooked? In Dubos’ words, the paper … ‘did not make it obvious that the findings opened the door to a new era of biology’. Dubos wondered if the Nobel Committee, unaccustomed to such restraint and self-criticism ‘bordering on the neurotic’ might have caused them to wait a while for both confirmation of the discovery and to see what the broader implications might be. To put it another way, Dubos questioned if the paper might have been a failure not in its own merits, as a scientific communication, but from the public relations point of view.
This lack of recognition is made all the more puzzling by the fact that, if the importance of the 1944 paper was not universally recognised when it was published, it became more and more obvious with the passage of time. The Hershey and Chase paper was published in 1952. And although he was retired by the time Crick and Watson published their famous discovery of the three-dimensional chemical structure of DNA in 1953, Avery was still alive. He wouldn’t die until two years later, in 1955.
More recently the Nobel authorities have allowed open access to their earlier thinking, and this has confirmed much of what Dubos had concluded. As part of the system for deciding who should get Nobel Prizes, the Nobel Committee receives proposals from leading experts around the world. In the words of Portugal, who reviewed their working and archives, ‘It seems that key biological chemists were not convinced by Avery’s claim that DNA was the basis of heredity.’ Not a single geneticist nominated Avery for the Nobel Prize. In part this may have reflected a difficulty in extrapolating his discovery in a single type of bacterium to genetics more widely, but even those colleagues who did nominate him for the Nobel Prize tended to overlook his work on DNA in favour of his immunological typing of the pneumococcal capsule. Portugal also wondered if Avery’s own idiosyncratic behaviour, including his reluctance to meet with and exchange findings with colleagues, and in particular geneticists, at scientific meetings had unintentionally confounded the acceptance of his groundbreaking discovery.
We are left with a lingering sense of regret that Avery was not accorded the recognition he deserved. He was 67 years old when his iconoclastic paper was published. It was, in the words of the eminent biochemist Erwin Chargaff, the rare instance of an old man making a major scientific discovery. ‘He was a quiet man: and it would have honoured the world more, had it honoured him more.’
But there is a greater acknowledgement of discovery than the awarding of a prize, no matter how respected and prestigious. In the words of Freeland Judson, ‘Avery opened up a new space in biologists’ minds.’ By space he meant he had unravelled a major truth, revealing new unknowns and raising important new questions. Avery himself had, with quintessential modesty, touched upon those important new questions in his letter to his brother:
If we are right, and of course that is not yet proven, then it means that nucleic acids are not merely structurally important but functionally active substances in determining the biochemical activities and specific characteristics of cells – and that by means of a known chemical substance it is possible to induce predictable and hereditary changes in cells. This is something that has long been the dream of geneticists … Sounds like a virus – may be a gene. But with mechanisms I am not now concerned – one step at a time – and the first is, what is the chemical nature of the transforming principle? Someone else can work out the rest …
You look at science (or at least talk of it) as some sort of demoralising invention of man, something apart from real life, and which must be cautiously guarded and kept separate from everyday existence. But science and everyday life cannot and should not be separated.
ROSALIND FRANKLIN
The discovery of the ‘transforming substance’ by Avery, MacLeod and McCarty, confirmed by Hershey and Chase’s elegant experiment with the bacteriophage, proved that DNA was the molecule of heredity. But both groups were working with microbes, bacteria and viruses, which were known to be much simpler in their hereditary nature than, say, animals and plants. This left huge unknowns that needed to be explored. Was DNA the key to the heredity of all of life, or was it just relevant to bacteria and viruses? By the early 1950s, work in many different laboratories had confirmed that DNA was a major ingredient in the nuclei of animals and plants. This supported the idea that DNA was the coding molecule of life. But if so, how did it really work? How, for example, did a single chemical molecule code for the complex heredity of a living organism?
Biologists, doctors, molecular biochemists and geneticists were now asking themselves the same, or similar, questions. Critical to any such understanding was the precise molecular structure of DNA. If, for example, we were to regard the role of DNA as akin to a stored genetic memory, how did that molecular structure enable the quality of such a phenomenally complex memory? How was that genetic memory transferred from parents to offspring? How did the same stored memory explain embryological development, where a single cell arising from the genomic union of a paternal sperm and maternal ovum gives rise to the developing human embryo and future adult human being?
There was another profoundly important question.
Darwinian evolution lay at the heart of biology. To put it simply, Darwin’s idea of natural selection implied that nature selected from a range of variations in the heredity of different individuals within a species. The way in which it worked was exceedingly simple, if brutal. Those individuals, and by inference their variant heredities, who carried a small advantage for survival and thus a better chance of giving rise to offspring, would therefore be more likely to contribute to the species gene pool. In reality natural selection worked more through a process of attrition. Those less advantaged individuals who did not carry the advantage for survival, were more likely to perish in the struggle for existence, and thus they were less likely to contribute to the species gene pool.
This is what Darwinian evolutionary biologists refer to as ‘relative fitness’. It is the measure of the individual’s contribution to the species gene pool. Certainly it has nothing to do with racist