Мировоззренческие основы технологической сингулярности. Борис Шулицкий
Чтение книги онлайн.
Читать онлайн книгу Мировоззренческие основы технологической сингулярности - Борис Шулицкий страница 12
Подобные вопросы не могут возникнуть в связи с определением Ф. Энгельса, поскольку в нем уже содержится утверждение о том, что математические понятия являются лишь абстракциями от некоторых отношений и форм реального мира, они берутся из реального мира и поэтому естественным образом с ним связаны. В сущности этим объясняется поразительная применимость результатов математики к явлениям окружающего нас мира, объясняется успех того процесса, который мы сейчас наблюдаем и который называется «математизацией» знаний. Известен ряд примеров, когда абстрактно созданные математические теории намного опережали открытие соответствующих им реальных физических процессов в области естествознания. «Удивительная, непостижимая эффективность математики в естествознании, тот факт, что ее современные модели зачастую описывают довольно неплохо сложные процессы материальной действительности, говорит о том, что математика отражает не только количественную, но и в какой-то мере качественную сторону явлений объективной реальности, о чем писали еще Кант и Гегель» (20, 16).
1.7. Гипотеза «ассоциативной аналогии»
Если проанализировать состояние современной математики как области науки, как языка науки в историческом аспекте, выявить процесс формирования основных понятий, то становится очевидным, что современная математика имеет логически стройную внутреннюю структуру, элементами которой являются, в свою очередь, те самые математические структуры, поразительная применимость которых так удивляет («принцип иерархии структур» по Н. Бурбаки).
Но если математические понятия являются абстракциями отношений и форм реального мира, берутся из реального мира и естественным образом с ним связаны, то возникает вопрос – не отражает ли внутренняя структура современной математики, сложившаяся в процессе исторического абстрагирования форм и отношений реального мира, глубинную фундаментальную структуру реального мира? Не является ли внутренняя структура математики некой моделью реального мира? Если это так, то открывается уникальная возможность взглянуть на объективную реальность через призму внутренней структуры современной математики. Итак, что же лежит в основе современной математики?
В соответствии с исследованиями школы Н. Бурбаки, фундаментом современного математического знания является теория множеств. «Возможно вывести почти всю современную математику, – пишет Бурбаки, – из единого источника – теории множеств» (43, 26). В основе теории множеств,